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ABSTRACT

Over a period of two decades, the content of both test composites and the

operational test battery, the Amed Services Vocational Battery (ASVAB), have been

selected to maximize predictive validity with little attention given to improving the
classification efficiency of the total set of test composites in a multi-job, optimal assignment

situation. This emphasis on predictive validity and its operational simplicity can be shown
to be fundamentally erroneous with respect to both empirical results and psychometric

theory.

Although the present composites are of marginal value, considerable classification

efficiency is potentially obtainable from the existing ASVAB if it is used in accordance with

differential assignment principles. The primary objective of this report is to describe the
principles underlying selection and classification for multiple jobs identified through

reliance on the measurement of mean predicted performance.

The report includes descriptions of: (1) a new taxonomy for the total "personnel

utilization decision process" that embraces selection, classification and placement;

(2) methods of measuring potential classification efficiency and its components;

(3) techniques for improving classification efficiency through selecting predictors or

structuring job families and associated full least squares composites; (4) a means of
identifying rotations of principal component factors that maximize the differential efficiency

of a battery; and (5) a practical and flexible model sampling and simulation approach as a

tool for measuring selectional and classification utility.
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SUMMARY

A. PURPOSE

The current operational Army personnel classification and person-job matching

system utilizes a set of nine aptitude area test composites corresponding to nine job families

that evolved from two decades of research emphasis on enhancing predictive validity. The
content of both test composites and the operational test battery, the Armed Services
Vocational Aptitude Battery (ASVAB), was selected to maximize predictive validity with

little or no attention paid to improving the classification efficiency of the total set of test

composites in a multi-job, optimal assignment situation. Traditionally, the number of tests

per composite has been kept small and the weights restricted to unity--or, at most, to two or
three--in order to simplify the operational use of the composites. This emphasis on

predictive validity and its operational simplicity (required in a precomputer age) can be

shown to be either outdated or fundamentally erroneous with respect to both empirical

results and psychometric theory.

Although the present ASVAB composites are of marginal value, considerable
classification efficiency is potentially obtainable from the existing ASVAB if it is used in

accordance with differential assignment principles. The primary objective of this report

then is to describe the principles underlying selection and classification for multiple jobs

identified through reliance on the measurement of mean predicted performance (MPP). The
report embraces the total personnel utilization process and focuses on techniques for

measuring and improving classification efficiency.

In a companion study (Zeidner and Johnson, 1989b), we estimated that

implementing the tenets of differential assignment theory described in this report would

bring about a large aggregate gain in MPP. Our "ball park" estimate of gains attributable to

improved operational procedures to increase potential classification efficiency (PCE)

exceeds 200 percent, or four-tenths of a standard deviation. We predicted that the largest

contribution to PCE gains are full least squares (FLS, predictor composites; next are

enlarged and restructured job families; and then the aadition of classification efficient
0 tests in the battery. We know from our simulation results that improvements of one- or
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two-tenths of a standard deviation could be worth well over 200 million dollars annually to

the Army.

B. MEASURING CLASSIFICATION EFFICIENCY

We begin with a taxonomy of personnel classification. The purpose of personnel

classification is to match individuals and jobs in a manner that maximizes aggregate

performance. Such classification decisions are a major concern in the military services and

are of increasing interest in industry and in student counseling. We refer to the
implementation of classification decisions as the "assignment process;" our generic term for

the matching of individuals to either jobs (i.e., military occupational speciality) or to a level
within a job (placement) is "assignment." In our taxonomy of personnel utilization

processes "assignment" is subdivided into "classification" and "placement," and

"classification" is further subdivided into "hierarchical classification" and "allocation."

Traditionally, in selection and placement, only a single job is involved, and can be

accomplished with one or more predictors. The outcome is determined by an individual's

position along a single predicted performance continuum. Classification decisions provide

the basis for assigning a selected pool of individuals to more than one job. As in selection,

these assignments can be made on the basis of a single predictor continuum adjusted to
predict performance by reflecting job validities and/or values. When the predictors are

adjusted in such a manner that the mean adjusted predictor scores and the mean criterion

scores have the same rank order across jobs, a hierarchical layering effect that makes a

positive contribution to the benefits obtainable from classification is evident. A hierarchical S

layering effect due to either a variation across jobs of the validities of job specific test

composites, or to the value assigned to each job and reflected in predictor score means

and/or variances, assures that the assignment process is, at least in part, influenced by

hierarchical classification.

Classification that does not capitalize on hierarchical layering effects is referred to as
"allocation." While hierarchical classification can be unidimensional (e.g., based entirely

on a single predictor), allocation requires multiple predictors measuring more than one

dimension in the joint predictor-criterion space. Validity is determined individually against

each job's performance criterion; the set of job criteria should also be multidimensional.

Thus a lassification battery requires a separate assignment variable (criterion specific

composite) for each criterion, if allocation efficiency is to be maximized. In practice, a
smaller number of tests than are in the total battery are often used rather than in the LSEs

S-2
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(least squares estimates) from the total battery, the complete regression equation for all

predictors. The particular combination of predictors employed out of the total battery plus

the specifi ,weight given each predictor varies with each job criterion. In the Army, for

example, a different unit-weighted, three-test combination or aptitude area composite

currently is used in assigning individuals to jobs in each of nine families.

It is often assumed that the utility of the classification process is a direct function of

differential validity. More precisely, differential validity is the level of prediction, using

full battery LSEs, of differences among criterion scores. We also use the term in reference

to the validity vector for a job having differential validity, i.e., being more valid for its own

job family than for any other job family. Unfortunately, a simulation study is required to

translate the effect of differential validity into mean predicted performance (MPP), that in

turn can be readily translated into utility. The utility of a classification battery can be

characterized as being directly proportional to the average predicted performance of

incumbents in a number of different jobs after optimal assignment process has been used

with quotas taken into account.

When the test content of the selection/classification battery has been fully

determined and only the selection of test composites and weights for use in the selection

and/or classification of applicants for each job remains to be determined, the least squares

regression weights applied to all tests forming each test composite, the LSEs, provide

maximum utility when used in either or both selection and classification. Such composites

will not only provide the means of maximizing the average validities across jobs but will

also maximize potential allocation efficiency (PAE). The validities of these composites are,

of course, the multiple correlation coefficients between the composites and each job

criterion measure. No set of composites selected to lower intercorrelations among

composites or to increase the variation of composite validities across jobs (as one might

mistakenly attempt to do in order to increase PAE) can increase the utility function value as

well as the full regression equations based on the total battery. If composites use a reduced

number of tests or otherwise are not LSEs, or if jobs are clustered rather than matched each

with its own LSE, the best composites for selection are not necessarily the best for

classificat;on.

C. IMPROVING CLASSIFICATION EFFICIENCY

The possibility of fully benefiting (i.e., maximizing allocation efficiency) with no
decrease in average validity as a consequence, depends upon the following conditions:

S-3
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(1) whether the battery and composites are already determined; (2) which optimal

selection/classification procedure is being utilized to implement assignment to jobs (an LP

type program); and (3) whether job families are appropriately structured (smaller

differences among LSEs for jobs within families and larger differences between LSEs for

jobs across families, or ideally, one LSE for each job).

The potential benefits of optimal assignment are usually not realized because of the 0

nature of the operational assignment process used in practice. The traditional assignment

approach used in the military, for example, is a two-stage process: selection is first

accomplished based on AFQT entry-level recruitment standards, then classification is

accomplished on the selected group through the use of aptitude area composites. Benefits, 0
however, are maximized through the use of a single stage selection/assignment process

(i.e., multidimensional screening, the MDS algorithm that integrates the effects of both

selection and classification). Using the MDS model, both processes are accomplished

simultaneously through the use of different cut scores optimized for each job family •

predictor composite. An optimal selection/classification process most probably has never

been used in any operational context.

We define and describe means of defining and measuring potential allocation

efficiency (PAE), potential classification efficiency (PCE) and potential utilization

efficiency (PUE). The total selection, classification and placement process, individually or

in combination, is termed the "personnel utilization decision process." As noted,

classification efficiency may be subdivided into two effects: allocation efficiency and

hierarchical classification efficiency. All classification efficiency not due to hierarchical

layering effects, when heterogeneous validities and/or values are assigned to jobs and also

reflected in the predictor variables used in the assignment process, is attributable to

allocation efficiency. When the classification test battery is unidimensional, no allocation

benefit can exist; the assignment process consists entirely of hierarchical classification. If 5

all assignment variables (e.g., aptitude areas composites) have equal means and variances,

the classification process is pure allocation since no means for an hierarchical classification

process to capitalize on hierarchical layering is present. However, when hierarchical

layering of validities or job value,- exists and is reflected in t. predictors, and the joint 5

predictor-criterion space is multidimensional, the classification process includes both

hierarchical classification and allocation processes. When both hierarchical classification

and allocation are present in the same process, their effects are so confounded as to make

them difficult, if not impossible, to separate. •
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The work of Brogden and Horst generated the main stream of progress in the

measurement and improvement of classification effectiveness. Their contributions are

described in detail. Brogden's formulation ties classification to mean predicted performance

(MPP) and thus to utility in dollar-valued terms. Horst's measure of classification

effectiveness has a direct relationship to Brogden's measures when all of Brogden's

assumptions are met. The square of Horst's index is proportional to Brogden's index,

when all the assumptions of Brogden's 1959 model are met, and can be used to determine

the rank order of alternative batteries in terms of PCE.

We describe methods of improving potential efficiency through test selection, job

family restructuring, and/or selection and restructuring of test composites associated with

various jobs. The use of factor analysis to examine test content and/or job clusters as they

affect PAE or PCE is described.

A final topic discussed is the use of synthetic (generated) scores to simulate

personnel utilization applications so that alternative policies and procedures may be fully

evaluated withouL sampling distortions introduced by operational utilization of a battery for

selection and assignment. Synthetic samples may be drawn to represent empirical data

(e.g., test and criterion scores) and simulation studies conducted.

We assert that there is potential for more than three or four dimensions in the joint

predictor-criterion space. Batteries developed to maximize selection efficiency and

validated against limited, unidimensional job criteria are not the best starting point in

finding additional dimensionality needed for classification efficiency. Finding more

dimensionality in the joint predictor-criterion space requires at least the effort, concern and

care that was used to confirm the existence of general mental ability, clerical speed, and

psychomotor ability in the joint General Aptitude Test Battery-criterion space. The

methodology suggested in this report is essential for identifying both the potential and

existing operational utility of the ASVAB in classification.
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CHAPTER 1. PERSONNEL UTILIZATION IN THE
ASSIGNMENT PROCESS

A. INTRODUCTION

The central thesis of this report is that both personnel research and the operational
implementation of research findings should have as their primary objective the
improvement of utility. It is utility rather than the psychometric merit of the predictors that

best justifies the use of tests to select, classify, and/or place personnel. In this report we

extend this central theme from its emphasis on selection for a single job to selection and

classification for multiple jobs, accomplished through reliance on the measurement of mean
predicted performance (MPP). MPP is as useful a means of expressing benefits derived

from classification and placement as it was shown to be in unidimensional selection.

While the literature on the utility of selection is rich, and growing rapidly, there has

been very little published on the utility of classification and placement since Cronbach and
Gleser (1965). Significant contributions to the methodology for measuring and improving
classification benefits have been sparse since Paul Horst (1954-1960), Hubert Brogden
(1946-1964) and Richard Sorenson (1965-1967) wrote about the impact of personnel

classification on mean predicted performance.

We use the term "personnel utilization" to designate the total selection and

assignment process. The effects of alternative personnel strategies, and of tactics that can
manipulate variables in the personnel utilization system, can and should be measured in
terms of MPP. We describe how to: (1) choose among tests for inclusion in operational

batteries; (2) structure test composites and associated job families; and (3) design personnel
utilization processes; all are discussed in terms of which alternative personnel strategy will

best improve MPP.

Efficient utility analyses require consideration of all personnel utilization
p'c,,dureF; "'h,-n present in the personnel system being analyzed, the effects of selection,

classification, and placement must be reflected in the integrated computation of MPP. The
utility of a personnel system is as much a consequence of the efficiency of the

selection/assignment process as of the psychometric quality of the predictors.
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An effective taxonomy can assist in the selection or design of efficient algorithms

that can approach the full potential (theoretical) efficiency in actual operational situations.

Also, a taxonomy with provision for: (1) selection procedures that utilize multi-

dimensionality in the joint predictor-criterion space, (2) the application of selection and

classification/placement procedures in either separate or combined stages, and (3)

procedures that capitalize on the differences of the validities of assignment variables and/or
the values of job performance across jobs, is essential to the measurement of both potential

and operationally obtahied utility.

Selection and classification is almost always linked sequentially with classification

occurring after an initial selection process. We will refer to this model as the two-stage

selection/classification process. There is a one-stage simultaneous selection-classification

model that provides a feasible alternative to this two-stage model. The optimal

simultaneous process for accomplishing selection and classification--the multidimensional

screening algorithm (MDS)1--could be readily applied in the military setting, although thus

far it has never been implemented operationally.

Personnel utilization processes divide into several categories, each having different

implications for optimizing personnel utilization procedures and for measuring utility. A

personnel utilization taxonomy is included as a means of providing precision in designating 0

which process is under discussion. This taxonomy classifies personnel utilization

processes into non-exclusive categories based on whether a process: (1) is unidimensional
or multidimensional in the joint predictor/criterion space; (2) has the goal of rejecting

applicants (selection); assigning accepted personnel for jobs (classification); or of assigning 0

them to levels within jobs (placement); and (3) capitalizes on disparate validities or values

across jobs.

Job levels are the rungs on a specific career ladder corresponding to a progression •

of skill levels; these rungs might, for some industrial jobs, be designated as trainee,

apprentice, journeyman, or master positions. In the Army these job levels are the skill

levels in a military occupational specialty (MOS), as 1 (the entry level) through 3 (the

trainer/supervisory level). Placement into levels of a language or mathematics sequence

separately from the selection process in the university setting provides an academic parallel

to selection and placement for jobs. In distinguishing between jobs and job levels we are

This algorithm for the simultaneous and optimal accomplishment of selection and classification as an S
integrated process is described in Section C of Chapter 1.
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thinking of jobs as military occupational specialties rather than the specific duty positions

that are found within a MOS (many at the same level).

The "best" test composite for use in either selection or classification is a least

squares estimate of performance (one LSE per job) based on all tests in the experimental

test pool. A set of such composites is equally "best" for use in selection, classification, or

placement. Any deviations from this ideal, including all further test selection to identify

operational batteries or to form test composites, creates a requirement for separate

consideration of selection and classification. Similarly, the clustering of jobs into families

in order to reduce the number of operational test composites must be accomplished

differently depending on whether the objective is to optimize selection, classification, or

both.

A taxonomy of personnel utilization and a vocabulary in which potential efficiency

measures are related to the primary utilization categories are provided in Chapter 1. We

also emphasize the importance of the assignment algorithm's role in achieving the

maximum benefits from either multidimensional selection or classification.

The contributions of Brogden and Horst to the measnrement of classification

efficiency are discussed in Chapter 2. The proportionality of the square of Brogden's

measure of potential allocation efficiency (PAE) to Horst's index of differential validity

(Hd) (if Brogden's assumptions are met and the number of jobs is held constant) is

established in Chapter 2. The effects of hierarchical layering on Hd is then discussed; when

hierarchical layering is a major contributor to the magnitude of Hd, the lack of evidence for

a close relationship between Hd and MPP reinforces our preference for using MPP, the

more direct measure of potential classification efficiency, instead of Hd in the evaluation of

alternative utilization strategies.

Brogden (1959) provides tabled values for mean orthogonal criterion scores. When

Brogden's assumptions are met his entries can be multiplied by R(l-r)1/2 to yield MPP

standard scores where R is the common multiple correlation coefficient for the LSEs and r

is the common intercorrelation among the LSEs. Brogden's model is of major importance

because it proves that a classification process can be profitable even when the

intercorrelations among LSEs are high. However, we emphasize that other predictors

cannot be substituted for LSEs in Brogden's model. Further, we do not kn6w how robust

Brogden's and Horst's indices are as one departs from the assumptions of Brogden's 1959

model.
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Relevant literature on the contribution of classification to utility is summarized in

Chapter 2. Particular attention is given to studies that relate characteristics of the
classification process to MPP. Studies and/or methodologies using subjective estimation of
payoff as the figure of merit have been intentionally omitted from our review.

In Chapter 3 we proceed from the measurement of classification efficiency to its
improvement through selecting predictors or structuring jobs and associated LSEs. A

means of identifying rotated principal component factors that maximize Hd is described and
their use as composites or as a means of clustering jobs for use with composites is

recommended.

Most attempts to improve the classification efficiency of the personnel utilization
process will require the use of a readily computable index as a surrogate for MPP. While

Horst's differential and absolute validity indices (Hd and Ha, respectively) are used as

figures of merit for most of the selection or clustering techniques described in Chapter 3,

two theoretically superior indices are also proposed.

Dedication to the use of MPP as the figure of merit for evaluating personnel

utilization strategies motivates our inclusion of a chapter on model sampling. We believe
the use of a number of samples of real or synthetic data as input into simulations of
personnel utilization strategies is the only practical way to obtai i the MPP scores required
for utility analyses. Chapter 4 is intended to help researchers and system analysts evaluate
the validity and usefulness of model sampling for utility analyses and to provide a starting

point for those who choose to use this methodology for computing MPP scores.

The complexity of multidimensional selection and assignment processes precludes

the use of simple analytical methods for computing MPP scores required for utility
analyses. This complexity contrasts with the simplicity of the univariate selection model in

which the validity coefficient is directly proportional to MPP when the selection ratio is •
held constant and the relatively simple optimal selection algorithm is utilized (i.e., the rank

ordering of applicants on predicted performance and selecting in order from the top down).
When analytical techniques cannot provide the MPP scores in a metric compatible with the
measures of cost obtained for a utility analysis, the remaining alternative is simulation. S

The initial input for simulations designed to provide MPP scores may be either real

records from a large data bank or entities consisting of synthetic scores provided by model

sampling techniques. Because the availability of MPP scores is essential to credible utility

analyses, we provide a description of model sampling techniques appropriate for use in
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simulating personnel utilization in a system context; the focus is on simulations designed to

provide an MPP standard score as the final output.

The purpose here is not to provide a comprehensive treatise on classification.

Actually, numerous topics in the classification domain have been deliberately left out

because they are side issues in the context of the central thesis of this report. The content

we selected for inclusion relates to the determination of: (1) the potential contribution of

classification to utility, and (2) the utility provided by classification effects in an operational

assignment process.

Classification is necessarily a multivariate topic and cannot be broken down into

univariate terms without losing the essence of what is to be gained from the simultaneous

consideration of many variables. Either relatively simple matrix notation or very ccrnplex

and tedious summation notation must be used to express these multivariate relationships.

We chose to use matrix algebra and to place the more formal derivations and

demonstrations in the appendices.

Much use is made of a particular factor analysis solution--the Dwyer factor

extension solution. The use of this factor solution ties together the contributions of Horst

and Brogden and also provides insight into other proposed approaches. It is recognized

that most readers will not claim to have more than a modicum of facility in matrix algebra,

although it is anticipated that the majority will have some familiarity with the use of factor

matrices to present results of psychometric studies. It is intended that the non-mathematical

explanations in the text will carry the reader along even if he or she ignores the occasional

use of matrix algebra.

B. EXTENDING SELECTION UTILITY TO MORE COMPLEX DECISION
SITUATIONS

In an earlier report selection utility was described and analyzed (Zeidner and

Johnson, 1989a). In the report, we introduce the concept of classification effects as an

ingredient of utility. Research publications on classification effects and utility are far fewer

in number than on selection utility. Therefore, we start by making several distinctions in

terminology between the well-known terms used in selection utility and those we must use
to incorporate the effects of classification into selection and classification utility.

The term "personnel program effects in selection utility" refers to productivity gains

attributable to the selection procedure based on net benefits (i.e., productivity gains minus

program costs) expressed in dollar-valued terms. These gains can be referred to as
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"benefits." In this chapter we use the term "benefits" to embrace a set of procedures

broader than selection alone. Additionally, we refer to performance benefits without S
consideration of program costs (e.g., costs of recruiting, testing and attrition). The utility
of personnel program effects attributable to selection/classification procedures are

considered in Zeidner and Johnson (1989b).

Personnel programs may result in benefits attributable to procedures not considered 0

in previous chapters, including: (1) simultaneously selecting for several types of jobs;

(2) selecting and placing applicants into an appropriate level of a job (as in the Army's
"stripes for skills" program); (3) first selecting and then asssigning to the job for which

predicted benefit is maximized; or (4) selecting, placing, and classifying personnel in
separate stages or simultaneously as an integrated decision process.

Each of these procedures uses a distinct decision process that is used to select

and/or assign personnel. We would expect each procedure to provide greater benefits (and
utility) than is obtainable from a simple selection procedure. This potential increase in •

benefits distinguishes utility measurement that includes classification effects from utility
measurement based on simple selection. Once the predicted benefits from classification
have been determined, most of the concepts used in selection utility are applicable to

classification. The determination of predicted benefit depends on: (1) the decision process

itself; (2) the potential efficiency of the test battery; and (3) the dimensionality of the joint

predictor-criterion space.

The disparate effects of selection, placement and classifiction on predicted 0
performance requires a taxonomy which assists in the understanding of selection,
classification and placement procedures, singly or combined, in the context of improving

performance and measuring utility. Capabilities of various procedures for capitalizing on
variances of predicted performance (PP) scores, between and within, people, jobs and job 0

levels can be better understood in the context of this taxonomy.

This chapter provides precise definitions for selection classification and placement,
the major procedures comprising a personnel utilization taxonomy. These major

procedures are further broken down into subcategories based on whether or not

they capitalize on: (1) multidimensionality in the joint predictor-criterion space, and

(2) hierarchical value or validity relationships that link predictor and criterion variables. We
also describe decision outcomes associated with these procedures: rejection versus

acceptance; rejection versus assignment to specific jobs; and assignment of those already

accepted. Certain decision processes can provide optimal outcomes for some procedural
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subcategories but not for others. However, the algorithms we call multidimensional

screening (MDS) can, when used appropriately, maximize MPP for all three procedures

and their subcategories.

Existing operational procedures and/or test batteries are often much less efficient

than they could be. For example, the full set of tests in a battery often are not used in

prediction equations or test composites. If least square estimates based on the total battery

are not used, classification and/or placement procedures will not yield all of the potential

classification efficiency (PCE) embedded in the battery. While simple validity of a best-

weighted test composite (corrected for restrictions in range and criterion unreliability) is

proportional to the potential selection effectiveness (PSE) of a specified set of tests, more

complex procedures are required to estimate the corresponding PCE of a test battery. A

PCE estimation must be made in the context of a specified set of jobs, job performance

measures, test battery, test composite sets (assignment variables) and the assignment

algorithm.

While the expression of PSE in terms of mean predicted performance (MPP) is

optional, since PSE can also be expressed as a validity coefficient, PCE can only be

expressed in terms of MPP. Thus, as a means of linking this publication with Zeidner and

Johnson (1989a), we define both PSE and PCE as the MPP standard scores resulting,

respectively, from selection or classification procedures.

As a starting point, in the determination of the contribution of classification effects

to utility, the measurement of benefits can be approximated by computing mean predicted

performance (MPP) across jobs. If MPP is weighted by the value (importance) of each

job, it becomes a more useful measure of benefits. Thus the term "benefit" is used to

denote a theoretically desirable measure of performance that is value weighted for jobs

and/or job levels and is expressed in terms of an appropriate metric. This variable, when

correctly combined with costs, provides a measure of utility.

The discussion of a personnel utilization taxonomy in the following section

assumes that the goal of selection, classification, and placement procedures is, individually

or in combination, to maximize mean predicted benefits. As mentioned earlier the total

mean predicted benefit from a classification process is a function of the effectiveness of the

selection/assignment algorithm (the decision process), potential classification efficiency of

the battery, and the multidimensionality of the joint predictor-criterion space (the space

spanned by the least square estimates of the multi-job criteria).
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This chapter also considers the impact of policy constraints on the decision process.

It is frequently necessary to make compromises between efforts to enforce constraints

imposed to rel ,'ct personnel policies and efforts to maximize the benefit provided by the

personnel' -Jization decision process.

The measurement or estimation of utility obtainable from using personnel
instruments to make operational personnel decisions in the context of a selection process is

covered in Zeidner and Johnson (1989a). An optimal selection process is frequently
visualized in the discussion of utility estimation models as the rank ordering of all

applicants on the benefit predicted from the personnel instrument(s), and the rejection of all

those below a specified cut score on a predicted benefit continuum. Optimal processing for 0
the more complex personnel utilization categories must also be similarly defined as the first

step in determining their utility.

The literature bearing on the utility of personnel instruments has little to say on the
benefits obtainable from: (1) simultaneously selecting for several types of jobs; S

(2) selecting and placing applicants into an appropriate level of a job (as in the Army's
"stripes for skills" program); (3) first selecting and then assigning to the job which

maximizes predicted benefit; (4) selecting, placing, and classifying personnel in separate

stages, or simultaneously as an integrated decision process.

There are obviously many different ways, each using a distinct decision process, in
which personnel instruments can be used to select and assign personnel. Many of these
ways could provide greater benefits and a greater contribution to utility than is obtainable

from a simple selection process. It is primarily the increment in the potential benefit

obtainable from the personnel utilization process that makes it so important that

classification be considered, along with selection, in the estimation of utility.

Once the predicted benefit has been determined, most of the utility concepts and
estimation procedures discussed in Zeidner and Johnson (1989a) are applicable. The

predicted benefit will be maximized when the following conditions are met: (1) The

decision process for selecting and assigning is optimal; (2) the test battery and the test

composites have been selected to maximize PAE, PCE, and/or potential utilization

efficiency (PUE); and (3) the set of criteria which maximize the dimensionality of the joint

predictor-criterion space is used to compute validities.
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C. A TAXONOMY OF APPLICANT/EMPLOYEE UTILIZATION
PROCESSES

The magnitude of "benefit" resulting from personnel utilization depends heavily on

the nature of the decision process, including the algorithms used, recruiting and counseling

policies, and the characteristics of decision tools. Before discussing the relationship of the

above process components to both potential and actual benefit, we first define a vocabulary

of the processes that can be used to implement selection, classification, and placement

policies. Definitions will follow common usage, except where there is not agreement on a

precise meaning. Also, names and definitions are given to several processes that lack
recognizable names, or have inconsistent definitions in the literature.

The total selection, classification and placement process, individually or in

combination, is termed the "personnel utilization decision process." Utilization is

subdivided into the three procedures or subcategories of selection, classification, and

placement, in accordance with the goals and characteristics of the utilization process. (See

Figure 1.1.) Each of these three subcategories is further subdivided into two sub-

subcategories, each based on whether or not the decision process capitalizes on the mean

predicted benefit scores variance, across jobs for classification, across levels within jobs

for placement, or for either or both jobs or job levels for selection. A "hierarchical"

process will be said to occur in selection, classification, or placement if the mean predicted

benefit scores of those performing in different jobs or in different job levels are sufficiently

different to make a practical difference, and the selection/assignment process capitalizes on
these differences. (See Figure 1.2).

A difference among mean benefit scores across jobs (a hierarchical layering effect)

can result from either differences in validities or in the differences in values (importance or

criticality) accorded to jobs. Both differences may exist in the same situation. To capitalize

on differences in validities, the most effective test composites will of course be the least

squares predictions of benefits. Other test composites may not necessarily provide the

maximum hierarchical layering capability, even though the other three conditions are

present (i.e., the assignment or placement process is capable of capitalizing on the

hierarchical effect and both the test battery and the performance measures have the

characteristics that elicit the hierarchical effect). For example, the Army aptitude area

composite predictors, using an optimal assignment algorithm, still would not provide a

hierarchical layering capability, despite validities that vary considerably across jobs, since
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UTILIZATION

Decision Goal ?

Reject/Accept Assign to Job Assign to Job/Level

SELECTION CLASSIFICATION PLACEMENT•

Control of entrance Matching of men to jobs Matching of men to
into organization levels within jobs

Are validities and/or values of jabs equal?
YES--process is non-hierarchical NO--process is hierarchical

ALLOCATION HIERARCHICAL
CLASSIFICATION

What is dimensionality of joint predictor-criterion space?

UNIDIMENSIONAL PROCESSES MULTIDIMENSIONAL PROCESSES

SINGLE COMPOSITE
(OR EQUIVALENT) MULTI-COMPOSITE

HIERARCHICAL LAYERING HIERARCHICAL LAYERING

What is basis of hierarchy? What is basis of hierarchy?

Diff erential Differential Diff erential Differential

Single composite Single composite Multi-composite Muti-composite
validity" layering va la layingng "validityring ring value" layering

NOTE:
a This branch could also be attached to eiter selection or placement. If attached to selection, simple selection"

is substituted for 'allocation:' If attached to placement, 'vertical job matching* is substituted for 'allocation.'
The *Hierarchical Classification' branch becomes "Hierarchica Selection' if attached to selection," and
*Hierarchical Placement* If attached to "placement." Multidimensional Selection has an additional division into
selection for jobs' vs. 'selection for levels within jobs.*

Figure 1.1. Taxonomy of Personnel Utilization Processes 0
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0

0

UTILIZATION

I Non-hierarchical Hierarchical
Processes Processes

Hierarchical Hierarchical Hierarchical
Selection a Classification Placement

S _T

Selection for Selection for

Jobs Job Levels

0
Unidimensional Multidimensional Unidimensional Multidimensional

Hierarchical Hierarchical Traditional Multi-Composite
Layering Layering Placement Placement

"Validity"Vle aiiVle
Layeringj {"ale"qLyrn

LLayerinZ

NOTE:
a Equal to Hierarchical Classification or Hierarchical Placement processes but with an added rejection category.

b This stem also attaches to each of the two divisions of Hierarchical Selection, and could substitute for the stem

shown attached to Hierarchical Placement

Figure 1.2. An Alternative Depiction of Personnel Utilization
(an Emphasis on the Hierarchical Processes)
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they were standardized to have equal means and variances. However, if the composites
were to be weighted by job values or by the validity of each composite for a job, and

assignments accomplished using an optimal assignment process, a hierarchical layering

effect could result.

The absence of a hierarchical capability identifies the process as being in one or

more of the following three sub-categories: (1) traditional selection, (2) the allocation 0
subcategory of classification (a horizontal job matching process), and/or (3) a special kind

of placement within upper and lower cut scores which we refer to as the vertical matching
of personnel skill levels to job requirements. (See Figure 1.3.)

1. The Six Process and Three Tool/Data Characteristics

The subcategories are distinguished from each other by the presence or absence of

six decision processes and three tool/data characteristics. (See Tables 1.1 and 1.2.) The
first process characteristic, PCI, relates to the result or goal of the decision process. The

three major categories are uniquely defined by the decision goals (i.e., to accept or
reject applicants is a selection goal, to assign across jobs is a classification goal, and to

assign across job levels is a placement goal). Additionally, the major categories also have
distinct relationships to the remaining five process characteristics and could be uniquely

defined by the presence or absence of characteristics critical to each category, entirely apart

from PCI.

The second decision process characteristic, PC2, is essential to a selection process.
The selection algorithm must have the capability to rank order applicants on a predicted

benefit continuum in order to accept those yielding the highest mean predicted benefit. In

other words, the selection process must have the capability of capitalizing on the spread or

variance of predicted benefit scores among the applicants for each of one or more jobs.

The third decision process characteristic, PC3, relates to the capability of the

decision algorithm to capitalize on intra-individual differences, the variance of predicted

benefit within each individual across jobs. The presence of this capability is a necessary
and sufficient characteristic of the classification subcategory we refer to as allocation.

1-12



UTILIZATION

Non- hierarchical 1Hierarchical

Processes 
Processes

Unidimensional Multidimensional
UniUimensional Multidimensional rtical vertical

selection selection job matching job matching

a b

Selection Selection for
for jobs job levels

NOTE:
* a Multidimensional classification process with a rejection category at the lower end of each continuum.

b Multidimensional placement process with a rejection category at the lower end of each continuum.

Figure 1.3. An Alternative Depiction of Personnel Utilization
(an Emphasis on the Non-Hierarchical Processes)
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Table 1.1. The Personnel Utilization Decision Processes

a
One Stage Procedures PC Objective Optimal Process

Setoction 2 Reject/accept Selection = rank order and determination

of cutting score on continuum

Allocation 3 Assign to job Job assignment - LP algorithm for

accomplishing person/job match

Vertical Job Matching 4 Assign to Job level assignment = LP algorithm

job level for accomplishing person/job-level match

Hierarchical Classification 5 Assign to job Job assignment b

Hierarchical Placement 6 Assign to Job level assignment b

job level

Selection-Classification/ 2, 3,4, Reject vs. assign Selection and job and/or job level

Placement 5 to job and/or assignmentb

job level

NOTE:

a See text for definition of process characteristics (PC).

b Optimal processes tor selection and assignment are defined above.
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Table 1.2. Relationship of Selected Procedures to Variance of
Benefit Measures

Tool Data Identification of Variance
Identification of Procedure Characteristics Objectives Required for Process Efficiency

Traditional Simple Selection la Reject/accept Within a job, across individuals

Simple Placement-Selection 1 b Reject/accept Within each job level, across
individuals

Allocation 2a Assign Within each individual, across jobs

Vertical Job Matching 2b Place Within each individual, across job
levels

Hierarchical Classification 3a Assign Job means across jobs

Hierarchical Placement 3b Place Job level means across job levels

Hierarchical Job Selection 1 a and Reject/assign Within a job means across individuals
2a and/or and within each individual, across jobs,

3a and/or jub means across jobs

Classification 2a and/or Assign Within each individual, across jobs
3a and/or job means across jobs

Placement 2b and/or Place Within each individual across job
3b levels and/or job level means

across job levels

Horizontal Job Selection la and Reject/assign Within each job across individuals
2a and, within each individual,

across jobs

Vertical Job Selection 1 a and Reject/place Within each job level, across
3a individuals and, within each individual,

across job levels

Multidimensional Selection 1 a and Reject/assign Within each job and/or job level,
(relating to jobs and/or one or more: across individuals and at least one
job levels) 2a, 2b, of the following:

3a, and/or (a) within each individual, across jobs
3b (b) within each individual, across job

levels
(c) job means across jobs
(d) job level means across job levels
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The fourth decision process characteristic, PC4, similarly relates to the capability

of the decision algorithm to capitalize on the variance of predicted benefit provided by each

individual across layers or levels within one or more jobs. Just as the presence of PC3

defines allocation, PC4 defines the placement sub-subcategory that does not capitalize on

hierarchical layering. We name this subcategory vertical job matching. This is not

traditional placement in which each applicant is assigned to the highest level for which he or

she qualifies, but instead gives equal emphasis on not placing an individual at a level where 0

he or she would perform more poorly as a result of being over qualified (and perhaps under

motivated). This process was implemented in the first linear program (LP) driven

assignment program utilized by the Marine Corps; the Air Force utilized a similar concept in

their enlisted classification program.

The fifth process decision characteristic, PC5, pertains to the capability of the

decision algorithm to capitalize on the variance of mean predicted benefit scores across

jobs. This characteristic is essential for hierarchical layering, a subcategory within 0

classification. As previously noted, this variance can be the result of either different values

placed on comparable performance for different jobs, variance in validities across jobs, or

both. For this capability to be maximized, the test composites used in the classification

process must reflect the values and/or the validities attached to jobs (i.e., have predicted -

performance means proportional to job values and/or validities).

The sixth decision process characteristic, PC6, similarly pertains to the capability of

the decision algorithm to capitalize on the variance of mean predicted benefit, but across

levels within jobs, rather than across jobs. This characteristic is essential for the

hierarchical placement subcategory. This subcategory is the traditional placement process

in which the employee or student is assigned to the most difficult tasks that the tests predict

the individual is competent to perform. It is usually assumed that the benefit to the

individual and/or to the organization is greatest when the individual is assigned to the most

complex task he or she is competent to perform.

The three tool/data characteristics represent characteristics that must be present in

the data for a process to effectively select, classify, or place personnel in jobs and/or levels

within jobs. The first characteristic, TCl, relates to selection. Effective selection requires

an adequate variance of predicted benefit scores for the target job.

The second characteristic, TC2, relates to both non-hierarchical classification and

placement. Effective vertical placement and effective allocation require an adequate

variance of predicted benefit scores within each individual--across jobs for allocation and
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across levels within jobs for vertical job matching (non-hierarchical placement). This

tool/data characteristic is also required for effective multidimensional selection, as when

multidimensional screening (MDS) or some other multidimensional selection algorithm is

utilized.

The third characteristic, TC3, also relates primarily to classification or placement,

but as with TC2 can affect simultaneous selection-classification or selection-placement.

Effective hierarchical-classification and hierarchical-placement require an adequate variance

of mean benefit scores, across jobs for hierarchical-classification and across levels within

jobs for hierarchical-placement. The presence of the second of the above tool/data

0 characteristics, TC2, is essential to effective allocation or vertical job matching

(non-hierarchical placement) and is the result of predictor variables and job performance

measures capable of combining to yield a multidimensional joint predictor-criterion space.

While PC1 places each process in an exclusive category, it should be obvious that

0 neither the other five processes, nor the three tool/data characteristics, that together define

and limit the subcategories of selection, classification and placement, are mutually

exclusive. All categories can be effectively present in a single integrated process. For

example, selection, allocation, and hierarchical layering could be accomplished in a single

0 stage decision process in which each applicant is accepted or rejected; those applicants not

rejected are assigned to jobs and/or to alternative levels within those jobs by means of a

predictor battery, a decision process algorithm, and criterion information that can capitalize

on all three of the tool/data characteristics.

We used the three best understood and universally recognized procedures--

selection, classification, and placement--as our first level division in Figure 1.1. Utilization

can be divided into these three categories on the basis of the goal or objective of the

procedure (PC1); the same identification of a process such as selection, classification or

placement, can be made by reference to the kind of benefit variance used by the process to

make selection and/or assignment decisions (PC2, PC3, PC4, respectively).

Structuring the personnel utilization process along the lines described in our
taxonomy is significant for a number of reasons. First, predicted benefit may be estimated

differently depending on the process subcategory. Second, different test battery
characteristics are desirable depending on the process being utilized. Third, assignment

algorithms will be more efficient with respect to some utilization subcategories than to

others. Fourth. and possibly most importantly, because different subcategories of

utilization procedures lead to different distributions of "high quality" personnel assigned to
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critical jobs, the effects of differences in procedures impact on manpower policy.

Alternatively, manpower policy directives affect the procedure subcategories in different

ways and to different degrees.

2. Selection

In developing a taxonomy of utilization, one runs into an immediate problem •

concerning the appropriate dividing line between selection and classification. Others have

determined the dividing line by differentiating between: (1) the filling of one job (selection)

or more than one job (classification); or (2) rejecting some applicants (selection), or

assigning all applicants to jobs (classification). 0

Our taxonomy is based on the latter distinction. (See Figure 1.1.) We identify

selection as the procedure that produces the decision as to whether or not an individual

becomes a member of the organization. A process is selection if the applicant is being

considered for membership at large (with assignment to a job to come later) or if the

applicant is being considered for rejection or acceptance for a number of specific jobs.

Thus, selection can be either a unidimensional or a multidimensional process--selection for

a single job or for many. In the latter case the amount of differential validity in a selection

battery is an important determiner of the benefit resulting from a selection process.

The unidimensional selection procedure divides into: (1) the traditional selection

process in which an applicant is accepted or rejected for a single job (or for membership in

an organization); (2) the placement-selection process in which the individual is either

rejected (non-selected) or placed at alternative levels in a single job (or family of jobs); and

(3) the hierarchical classification-selection process in which some are rejected and the

remainder assigned on the basis of hierarchical layering.

When there is only one selection instrument and several jobs of different values to

be fillcd, predicted benefit may be maximized by rank ordering both applicants and jobs;

the highest scoring applicant is assigned to the highest valued job, and assignment

continues from the top scoring applicant downward with applicants scoring below some

point rejected. The assignment process and the method for determining benefit is very

similar in selection for hierarchical layered jobs to that of unidimensional selection for

hierarchical placement. Both procedures are forms of simple unidimensional selection

integrated with, respectively, hierarchical classification or hierarchical placement.
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The multidimensional selection subcategory divides into selection for jobs or for job

levels, each of which in turn divides into: (1) a subcategory where each job is equally

valued, called here horizontal-selection (for jobs), or vertical selection(for job levels); and
(2) a subcategory that capitalizes on the different values or validities of jobs. If a rejection

category is provided for any classification or placement process, that process becomes

selection by our definition (PC 1). All optimal selection processes involve rank ordering

applicants on some benefit continuum and rejecting all those below some point on that

continuum. In multidimensional selection there is at least one more such continuum than

for unidimensional selection; however, once each continuum has been created the decision

process is essentially the same. (See Figure 1.4).

To achieve the maximum possible benefit out of simultaneous selection for a
number of jobs, apart from the hierarchical phenomenon, the predictor battery must have
what we refer to as potential allocation efficiency (PAE). For PAE to be non-zero, a

multidimensional joint predictor-criterion space must exist. The operational assignment

algorithm must capitalize on this potential if the operational allocation efficiency (OAE) is

also to be non-zero. An effective assignment algorithm for maximizing the benefit of the

selection/classification process should ensure that no nonselected person has a higher

predicted performance on any job than the person assigned to that job. The algorithm

should also ensure that no other assignment method can raise the mean predicted

performance (MPP) further. We call one such algorithm that accomplishes both selection
and classification, simultaneously and optimally, multidimensional screening (MDS), and

describe it in a later section.

3. Classification

Classification is defined as the procedure in which employees are matched with
jobs. The objective is to maximize the mean predicted performance (MPP) of those

assigned. In a simultaneous selection/classification process, selection refers to the rejection
or acceptance of applicants; classification relates to matching jobs and employees. Since

the process is integrated, it may not be possible to say whether a given step belongs to

either the selection or the classification aspect of the algorithm. Although the selection

objective is usually stated in terms of maximizing the MPP of the selected group, fairness

of the selection process is usually weighed in terms of the relative merits of individuals in

the rejected grop. No selection process can be said to be completely fair as long as a
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SELECTION

Unidimensional Multidimensional

E uSelection Selection

Selection Selection for
for Jobs Job Levels

b 
c

Non-hierarchical Hierarchical Non-hierarchical Hierarchical
Horizontal Selection Vertical Selection Selection
Selection for Jobs for Job Levels for Job Levels

NOTE:

a Traditional simple selection falls within this branch.

b Comparable to Classification but with a rejection category for each continuum.

c Comparable to Placement but with a rejection category for each continuum.

Figure 1.4. An Alternative Depiction of Selection
(an Emphasis on Multidimensional Selection)
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single member of the rejected group has a larger MPP for any job for which they are an

applicant than the lowest scoring member of the accepted group. Thus the selection

objective may be stated as that of minimizing the predicted benefit score of each applicant in

the rejected group with respect to the specific job for which he or she comes the closest to

being accepted. Since doing this will ensure that no rejected applicant is more qualified on

any job than those accepted and assigned to that job, fairness or merit and utility are both

served. The classification objective may also be stated as that of maximizing the mean

predicted benefit score of the assigned group of employees.

Classification may be further divided into two processes, allocation and hierarchical

classification. The allocation process capitalizes on the variance of predicted performance

within an individual sometimes referred to as differential validity. Classification that

is accomplished without capitalizing on hierarchical layering is "pure" allocation. A pure

allocation process can be implemented in an optimal assignment process only when the

criterion variables for each job or job family have equal validities and values (importance or

criticality). We call the gain in benefit over random assignment obtained from this process
"allocation efficiency," and the maximum effectiveness achievable from a given test battery

and set of jobs, expressed as an MPP standard score, will be called potential allocation

efficiency, or PAE. We should immediately note that PAE may be zero for the above

example if the battery lacks differential validity or the criteria are unidimensional, even

though the assignment process may be optimal.

All classification efficiency not explainable as allocation efficiency is attributed to

hierarchical classification efficiency. Hierarchical classification is that part of the

classification process that capitalizes on the disparate means and/or variance across the

criteria. Even when the absence of differential validity prevents allocation effects,

hierarchical layering can provide classification efficiency. In such a situation hierarchical

classification efficiency can be demonstrated from the placement of each person in rank

order on a predicted benefit continuum, using one predicted benefit continuum for each job,

and entering each individual on a continuum as many times as there are jobs. Starting at the

top of each continuum and proceeding downwards, the individuals are then placed in a job

corresponding to the rank order of each score until the quota is met for a job. In

progressing down each continuum, 'he scores for filled jobs are skipped over. Thus in a

multi-job situation, pure hierarchical classification (i.e., no allocation effects are present)

becomes almost indistinguishable from the "placement" procedure for one job. That is, a

hierarchical classification process becomes computationally equivalent to a hierarchical

1-21



placement process (traditional placement) as the joint predictor-criterion space approaches

unidimensionality.

Hierarchical classification subdivides into a unidimensional and multidimensional

category, just as is the case for the selection procedure. In turn, each of these categories

subdivides into two subcategories based on how the hierarchy is determined. One

approach capitalizes on the hierarchy of predictability of jobs, using a process that assigns

individuals to jobs using job predictors (assignment variables) having variances

proportional to their validities for each job. The allocation sum of mean predicted benefit

scores is at a maximum when the predictor scores used in the assignment process are also

least square estimates of benefit. Thus there is an obvious advantage to using least squares

estimates of benefit for operational test composites. Such estimates have a variance equal

to the square of the multiple correlation coefficient of the estimate with the criterion and can

be expected to vary across jobs.

An assignment process using least squares estimates based on the full test battery as

the source of operational test composites used to make assignments thus, is partly

hierarchical classification--unless the estimates are standardized to have equal means and

validities (e.g., when least square estimates in standard score form are divided by a number

proportional to their validities to give them equal variances) prior to their use with the 0

assignment algorithm.

The other method (subcategory) of hierarchical classification uses multipliers of the

performance estimates of individuals corresponding to those values management (or some

other authoritative source) places on performance in each job, to arrive at predicted benefit

scores.

The designation of the classification process as being either allocation or

hierarchical classification is straightforward and precise only under special conditions. For 0

example, when no hierarchical layering effects exist, all existing classification efficiency is

due to allocation efficiency. When there is only one predictor composite used for both

selection and classification, all classification efficiency is due to hierarchical classification.

However, when the joint predictor-criterion space is multidimensional and hierarchical 0
layering is also present, the separation of classification effects becomes difficult and

essentially ambiguous unless simplifying assumptions are made. Such a set of simplifying

assumptions is made in Appendix lB for the four variable model and in Chapter 3 to

separate the contributions of hierarchical layering and allocations effects to an index of

differenual validity.
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Hierarchical classification processes can be further divided into: (1) the

unidimensional hierarchical layering case, (2) the multidimensional classification case

where hierarchical layering effects are not duplicated by allocation effects, and

(3) hierarchical layering effects that compete and thus, in effect, overlap (are redundant)

ith allocation effects. This third category is the portion of hierarchical layering effect

which does not make an additional contribution to PCE over that provided by the within-

person variance of the PP scores. These three categories of hierarchical classification, plus

allocation, are depicted in Figure 1.5. Predicted validity is depicted as having a multiplier

effect on allocation and HC, individually or together.

To profit from any category of hierarchical classification processes, the assignment

variables must reflect the means and/or variances of the criterion variables. Thus, the

existing Army aptitude areas, which are composites that have been standardizeu " ave

means of 100 and standard deviations of 20, cannot capitalize on this aspect of hierarchical

classification.

An LP algorithm will provide optimal assignment for any of the various categories

of classification; however, more simple algorithms will also provide optimal assignment

when a hierarchical classification or placement process is unidimensional. Such a "more

simple algorithm" will be illustrated in an example provided in a later section of this

chapter.

4. Placement

Placement, by our technical definition, is analogous to classif.cation. If we replace

"jobs" with "levels within a job" in the definition of classification, we almost arrive at a

definition for placement. In the placement procedure, individuals are matched to levels

within jobs as compared to the classification process of matching personnel to jobs. As

with classification, there is a subcategory of placement that capitalizes on a hierarchy of

mean predicted benefits; this subcategory is called hierarchical placement. Similarly, there

is an alternative subcategory (the non-hierarchical case) that may reasonably have been

named allocation-placement. Instead, we call the latter subcategory, of vertical matching of

individuals to job levels, "vertical job matching." It should be noted that the comparable

subcategory of classification we call allocation may have reasonably been called "horizontal

job-matching," except for the widespread use of the term "allocation".
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Dimensionality of Joint Predictur-Criterion Space

Unidimensional Space Multidimensional Space

Predictive Predictive H.C.d Overlap e Allocation f
Validity a H.C.b Validity C

kL -

a Predictive validity does not by itself provide PCE, but must be non-zero for some jobs if H.C. is to be non-
zero; the average predictor validity across all jobs could be zero, providing a PSE of zero, and still permit
the H.C, effect to be of considerable magnitude since it is the separate validities for each job, not the
average validity, which provide the multiplier effect.

b An increment in MPP can be obtained from the use of separate assignment variables for each job or job
family that reflect the disparate means and/or variances of the criterion variables; in this case the H.C.
effects are based on a single predictor variable converted into predicted performance measures that
match a continuum of predicted benefits.

c Some investigators appear to believe that the contributions of multidimensionality to PCE is entirely due
to an increase in predictive validity; in fact, an increase in predictive validity due to use of separate LSEs
for each job or job family, is one factor, but not necessarily the most important one, in providing the gains
in PCE that often results from an increase in dimensionality of the joint predictor-criterion space.

d Hierarchical classification effects result from the matching of a hierarchy of predicted benefits, layer by
layer, with corresponding layers of the assignment variable that have been rank ordered on a predicted
benefits continuum.

e This overlap represents PCE that can be provided by either H.C. or allocation efficiency. Total
classification effects are provided by the union of H.C. and allocation effects, not by their sum. Most of
contribution that a moderate amount of H.C. can make to MPP when no allocation effects are present can
be provided by a moderate amount of allocation efficiency in the absence of H.C. efficiency. Examples
are provided in Appendix 1 B.

Allocation is the contribution of within person variance to PCE.

Figure 1.5. Relationship of Hierarchical Classification and Allocation.
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As in selection, each of the two second-level subcategories of placement subdivides

into a unidimensional and a multidimensional third-level subcategory. This dimensionality

pertains to the joint predictor-criterion space, discussed in greater detail in the next two

chapters. Obviously, the presence of only one predictor variable in the assignment (i.e.,
placement) process makes unidimensionality inevitable, but unidimensionality may result

even with the use of multiple predictors. If only one valid factor (e.g., the "general mental

ability" factor) is present in the predictor-criterion space for placement purposes, possibly

because the criteria (the set of predicted benefits) are unidimensional, the "assignment"
process would be within the unidimensional subcategory. Multidimensionality of

placement predictors can be used across jobs (e.g., when the assignment variables are

differentially valid across jobs for vertical job-matching or for hierarchical placement within

each job). Multidimensionality could also be applicable for a single job when a separate
predicted benefit (assignment variable) is computed for each job level within a job.

9 In providing examples of multidimensional placement, it is difficult to differentiate

among placement subcategories since the nature of the relationships across jobs are not
usually specified; cut scores on predictors, rather than optimal assignment algorithms with

well defined objzctive functions are usually utilized to effect placement. Also,

simultaneous consideration of examinees for several alternative levels across multiple jobs

is probably a rarity in practice.

Advanced placement tests administered to entering college students to determine

eligibility for receiving course credit (e.g., in calculus, or in a foreign language) are familiar

uses in the academic setting. The Army's "stripes for skills" program and the Navy's
World War II Seabee program that permitted experienced construction foremen to enter at

senior petty officer grades are examples of placement in the military. The utilization of
redundant employees in government and industry usually involves a placement process.

The determination of an applicant's appropriate grade level for a civil service job on the

basis of an unassembled examination is another example of placement. The use of
placement is more common than the number of research efforts undertaken to evaluate

utility attributable to placement procedures would lead us to believe.

Although our focus is primarily on classification and secondarily on
multidimensional simple selection, placement is included as a procedure in this taxonomy in

order to reduce possible confusion of hierarchical classification and placement and also to
provide a complete taxonomy. Fuller consideration of the utility of placement for use in

educational and employment contexts is worthy of separate treatment in future publications.
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Placement has been given many different definitions in the literature. We are

concerned with these definitions primarily because we wish to avoid confusion of

placement with classification. Placement is a distinct process, not just a special case of

classification when only one measure is being used to assign personnel to jobs. We believe

it is important to distinguish between classification and placement, and to be able to use a

terminology that permits the consideration of both unidimensional and multidimensional

test and criterion sets for all three major processes: selection, classification, and placement.

Placement is defined by Cronbach and Gleser (1965) as the assigning of an

individual to a "treatment" level using possibly one, but preferably more, test composites in

the decision process. This definition is consistent with our taxonomy when "treatment" is 0

restricted to personnel assignment.

Placement is defined by Schmidt (1988) as the assignment to one of several job

alternatives when there is only one test composite, e.g., a general cognitive aptitude
measure. His "placement" process is equivalent to our unidimensional hierarchical 0

classification process.

Anastasi defined placement in her book "Psychological Testing" (1988) in terms of

assignment to levels within jobs or training programs. Although she states,

"...assignments are based on a single score" (p. 189), in describing placement, it is clear

that she would restrict the use of the term placement to refer to the making of personnel

assignment decisions with respect to a single job, where "...it is evident that.. .only one

criterion is employed, and that placement is determined by the individual's position along a

single predictor scale...although placement can be done with either one or more predictors,

classification requires a multiple predictor whose validity is individually determined against

each criterion." (p. 189). We accept her distinction between the focusing on one job or
multiple job criteria as the basis of distinguishing between placement and classification.

However, we extend both concepts on the predictor side to include both unidimensional

and multidimensional processes. Both placement and classification can be based on use of
either a single measure or a set of composites to make decisions about matching persons to

jobs, or job levels.

Cronbach and Gleser (Psychological Tests and Personnel Decisions, 1965) utilize

the term placement in a manner entirely consistent with our definition when they are

referring to personnel procedures used in making assignments to levels of responsibility, to

compensation levels within a job, or to difficulty levels in a training program (p. 54). 0
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However, they extend their definition of placement to clinical diagnosis, and to the

selection of alternative treatment of individuals in many situations, including the paroling of
prisoners. No examples of personnel classification across jobs, defined as above, is

included as a "treatment" in a placement process.

The desirability of considering the differential validity of predictors in the selecting

of test composites to be used to effect placement to alternative treatments is emphasized by

Cronbach and Gleser (1965), "A measure that predicts success under one treatment and not

the other would be a much better aid to placement than a measure that predicts both"

(p. 59). It is clear that both classification and placement measures are most efficient when a
set of test composites possessing differential validity are available, in contrast to the use of

a single general measure.

A tree structure is not needed to depict our taxonomy; the utilization of the particular

inverted stem-to-leaf trees in the figures of this chapter have been provided to aid

* visualization of the taxonomy. However, the inherent structure of our taxonomy can be

shown by using any of the major division principles as the first branching level.

Figure 1.2, for example, illustrates that the first branching level could just as well be a

binary one of hierarchical versus non-hierarchical instead of the triad of selection,

classification, and placement. Or alternatively, this first branching level could be

unidimensional versus multidimensional. The outcome for the final subdivisions would be

the same. It should be noted that the division of the hierarchical processes into validity or

value hierarchies (both can be present in the same procedure) is unique to these processes

and cannot be extended to the non-hierarchical processes.

D. THE ROLE OF MEAN PREDICTED PERFORMANCE AS A UNIFYING
MEASURE READILY CONVERTIBLE TO UTILITY

0 The primary purpose of this section is to compare traditional selection with both

multidimensional selection and classification with respect to the manner in which benefit

and predicted benefit are defined and measured. The use of mean predicted performance

(MPP) as a surrogate of mean predicted benefit indicates that MPP is the variable to be

4P maximized in selection and classification processes. The substitution of MPP for mean

predicted benefit is justified, inasmuch as we believe MPP is the common thread that links

selection, classification, and placement on the benefits side of utility formulations. A

number of utilization efficiency concepts used extensively throughout the remainder of this

report will be defined.
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We distinguish between operational efficiency and potential efficiency of personnel

utilization processes. The measurement of personnel utilization efficiency, either for the

actual operational process or for estimating the potential of a test battery, requires

appropriately defined and computed scores for both uhc variables used to sclect ad,or to

assign and the scores used to provide the estimate of efficiency. Operational efficiency is

the improvement in MPP obtained from the usually imperfect operational assignment

process; potential efficiency is the improvement that would be obtainable if the maximally

efficient prediction composites of a given battery were to be used in optimal

selection/assignment algorithms. The resulting improvement must be measured in terms of

the best obtainable "least squares estimate" of performance. We refer to this best estimate

as predicted performance, and the measures of process efficiency will be expressed as an

,MPP standard score. The "process" for which efficiency is determined includes the

selection/assignment algorithms, the battery, the choice of assignment variables, the set of

jobs, and the performance measures.

The use of MPP as a measure of potential efficiency provilez, a in,i, Ui coinparing

the effectiveness of alternative tests or test batteries in the context of a specified set of jobs

and performance scores. Also, the benefit obtainable from an experimental pool of tests,

using various combinations of selection, classification, and placement is expressible in

terms of a measure of potential utilization efficiency. We later define and use measures of

potential utilization efficiency (PUIE), potential selection efficiency (PSE), potential

allocation efficiency (PAE), and potential classification efficiency (PCE).

Potential efficiency measures for a specified test or test battery must use least square

estimates of performance for both the variables used in the selection/assignment process

and for the variables used in computing the MPP standard score for selected and assigned

personnel. However, the assignment variables are estimates based on the specified test or

test battery, while the estimates of performance used to compute the final result, the MPP

standard score for selected and assigned personnel, are based on all available information,

including all tests in the experimental battery and any other biographical or operational

effectiveness variables for which the necessary data across all jobs is available.

The measurement of PSE is readily accomplished when there is only one target job,

using either the performance scores themselves (the criterion), or the predictor scores in

standard score form multiplied by the validity coefficient. As is described more completely

in Zeidner and Johnson (1989a), the mean of the criterion scores and the MPP scores, both

expressed in standard score form, are equal in the group that has been accepted (selected).
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The equivalent relationship is also true for the more complex forms of personnel utilization;

the mean of the actual performance scores is equal to the mean of the MPP scores for each

affected group (those selected and assigned to each job or job level), after the

selection/assignment process has been completed.

In contrast to traditional (simple, unidimensional) seiectiun, perforr,-ance scores for

those selected and/or assigned to a job cannot, for most personnel utilization processes, be

determined by the use of a simple analytical formula. For example, in simple selection,

MPP equals the validity coefficient multiplied by the quotient of the ordinate of the normal

curve divided by the percent selected, while the comparable value of MPP for a typical

classification example is based on a formula involving multiple integrals that are essentially

unsolvable. Thus, the increase in efficiency, expressed as a gain in the MPP standard

score resulting from the selection/assignment process, is based on the use of more complex

personnel utilization processes which take advantage of a multidimensional joint predictor-

criterion space. But the increase can only be determined at the price of not being able to use

the simple analytical method of computing MPP scores that result from the

selection/assignment process.

The computational procedures for operational selection and classification efficiency

have much in common. MPP standard scores are equal to the mean of the actual

performance scores (expressed in an appropriate metric) multiplied by the validity

coefficient pertaining to each job. There are, however, additional computational

complications that make classification different from selection in estimating efficiency. For

example, while performance scores of those assigned to a set of jobs as the result of a

classification process, expressed in standard scores based on the total applicant or

assignable population, are adequate for the computation of operational classification

efficiency, this procedure does not provide adequate information for computing potential

classification efficiency, since scores on all jobs for each individual are required. But

invariably only predicted performance scores are available for the computation of potential

process efficiency. That is, the option of computing MPP as the product of the validity

coefficient and the empirically obtained mean performance scores is not available for the

computation of potential process efficiency.

Fortunately, least square estimates (LSEs) of predicted performance scores can be

substituted for actual performance scores in both implementing and measuring the effects of

the selection/assignment processes. Performance scores are almost never available for an

individual across all jobs considered in a multidimensional personnel utilization process.
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However, it can be shown that for the covariances among performance scores of multiple

jobs, the criterion components that are orthogonal to the joint predictor-criterion space (the -

space spanned by the performance measures but not by the predicted performance

measures) are totally irrelevant to either the implementation of a selection/classification

process, or to the measurement of process efficiency. All of Brogden's and Horst's

contributions to the measurement or improvement of classification efficiency are dependent

upon this fortuitous finding. Both authors independently recognized and extensively

utilized this finding, ioag before a rigorous proof was provided by Brogden (1955).
Today no one challenges the substitutability of predicted performance for actual

performance.

Thus the least squares estimates of a set of criterion variables (i.e., predicted

performance scores) can be substituted for the actual criterion scores employing the

correlation coefficients between the predictor variables and the criterion variables. This

holds whether the predictors are considered separately or used in a weighted composite. )

The correlation of predicted performance with actual performance is unity when computed

in the joint predictor-criterion space. Most importantly, least square regression weights for

the predictor variables remain the same whether predicted performance scores or actual

performance scores are used as the dependent variables. Consequently, the same tests 0
would be selected from a pool of experimental tests in maximizing the prediction of either

predicted performance scores or actual performance scores. Also, applicants rank ordered

on predicted performance would remain in the same order as if they were rank ordered on
criterion scores, a consideration that is particularly important in both unidimensional and

multidimensional selection.

It is less evident, but equally true, that for personnel assigned to jobs using a linear

program (LP) algorithm to maximize MPP scores in the assigned group, the sum of actual

performance scores (in standard score form) will be equal to predicted performance scores

for those assigned to each job. This follows from Brogden's proof for a similarly stated

theorem. Brogden's slightly more general theory states that "for any given assignment of

men to jobs, the allocation sum obtained when regression estimates of the criterion are used

becomes, as N approaches infinity, identical with that obtained when the criterion scores

themselves arc usc ' (.ugdcn, 1935, p. 252). The term "used" refers to the variables on

which the allocation sum (i.e., the objective function) is computed.

Brogden (1955) also showed conclusively by means of a simple algebraic

deivation that least square estimates (LSEs) of performance (equivalent to our predicted
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performance measure) based on all the tests in a battery are optimal (i.e., maximize

potential process efficiency) for classification. It is well known that these LSEs also

maximize selection efficiency. Brogden's proof is based on the assumption that N, the

number being assigned, approaches infinity, and on the further assumption that the best

weighted test composites, used both in the assignment process and in computing the

objective function, include the total set of predictors that have non-zero regression weights.

An obvious inference can be drawn from the above concerning the Army's aptitude

area composites. Each composite consists of three unit-weighted tests (by no means least

square estimates) selected from a ten test operational battery. The operational battery, in

turn, has been selected from a larger pool of "experimental" tests. Brogden's (1955) proof

does not apply to this situation other than to say that these aptitude areas are not the best

composites obtainable from the battery or the experimental test pool. There is certainly no

evidence that these composites would be equally effective for selection and classification.

Brogden's proof, however, underlies almost every classification concept discussed in this

volume, including our definition of potential process efficiency that follows.

Abbe (1968) conducted a model sampling experiment to determine the robustness

of Brogden's 1955 proof when relatively small values of N are used. The computer

generated 10,000 entities (score vectors representing an individual) for two separate

analyses divided into 100 groups of 100 entities and also into 10 groups of 1,000, before

making optimal assignments using an LP algorithm. Two measures of the objective

function, one based on the least square estimate of predicted performance and the other on

actual "generated" performance values, did not differ to a statistically significant degree.

The results wer consistent with Brogden's theoretical proof for infinitely large samples

showing that the two measures would provide equal objective function values. These

results suggest that Brogden's proof is quite robust with respect to his assum'rtion of an

infinitely large N.

Harris (1967) provides strong evidence that Brogden's findings do not apply when

"best estimates" are based on only part of the available predictors. As suggested earlier, the

reduction in the number of tests in an operational test battery, and the further reduction of

the number of tests in a test composite corresponding to a job, or job family, creates a

distinction between what is best for use in selection as compared to what is best for use in

classification. Such a reduction is almost inevitable in the research and development phase

and one must not assume that classification efficiency can be served adequately by the
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selection of tests for a battery and the use of subsets for test composites designed to

maximize selection efficiency. •

Performance estimates can be transformed readily to benefit measures by first

converting the scale into a metric that is consistent with the cost metric and then providing

weights that reflect the values placed on performance in different jobs and/or in the different

levels within jobs. Such weights may be based on policy judgments or on evidence

bearing on economic value.

Since personnel utilization efficiency is primarily of psychometric rather than

economic interest, measures of classification efficiency are usually expressed by

psychometricians in terms of performance instead of benefit. The metric conversion and

further transformation of performance is deferred until after a number of serious

psychometric issues have been examined. As noted, process efficiency is measured in

terms of predicted performance. The MPP standard score for selected and/or assigned

personnel resulting from a specified personnel utilization process constitutes our measure

of process efficiency. Techniques for improving personnel utilization are evaluated in

terms of their effect on personnel process efficiency. The best test battery and the best set

of test composites are defined as those yielding the highest potential process efficiency.

Potential selection efficiency (PSE) for traditional unidimensional selection may be

quite simply measured, as described above, using a function of the validity coefficient, the

ordinate of the normal curve at the cut point, and the percentage of applicants who are

selected. It is not necessary to compute the MPP standard score as a direct function of the

mean criterion score. In contrast, the measurement of operational selection efficiency

requires the computation of the MPP standard score for those in the accepted group. The

predicted performance scores are standardized to have a mean of zero and a standard

deviation of one in the applicant population. If, and only if, the operational selection

process differs from the ideal process of rank ordering all applicants on predicted

performance and then rejecting all applicants that fall below a given cut score, will the

potential and operational measures of selection efficiency differ.

The MPP standard scores of the rejected and accepted groups are related by the 0

requirement that their weighted sum equals zero, the weights being the percent of the

applicant population in each group. Thus the MPP standard score used as the measure of

process efficiency can be obtained from either the accepted or rejected group, or the

separate estimates obtained from each group aggregated into a single estimate. 0
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It should be noted that the performance standard scores used for the computation of

PSE and PUE are standardized on the applicant or youth population in the military context.

Thus both these indices reflect the gain in the MPP score in the selected, or selected and

assigned groups over the MPP score in eiiher the applicant or youth population. In

general, the comparison will be made with the youth population when the total process,

including recruiting, is being evaluated; the applicant population will be used when it is

desired to evaluate the later processes independently of both recruiting policies and

procedures and societal effects that determine who of all those in the youth population will

become applicants.

Since PCE should reflect the improvement the assignment process can accomplish
(making optimal use of the classification test battery) above and beyond selection effects,

PCE is defined as the MPP standard score for the assigned personnel; the performance

standard scores in the group to be assigned have a mean of zero and a standard deviation of

less than one (i.e., the result of truncation or restriction effects introduced by the selection

effects on an application population that in many models is assumed to have a standard

deviation of one). 2

It is easy to separate the effects of selection and classification in a two stage process
in which selection is accomplished by a single test composite (e.g., a general mental ability

measure such as AFQT) in the first stage. In such a process, PSE and PCE are additive

(i.e., PSE + PCE = PUE). This is so because our definition of PCE calls for using the

MPP score resulting from the selection process as the mean of the performance standard

scores that, when averaged after assignment, provides the MPP score used as the measure

of PCE. The result of the selection process is the starting point of the classification

process, and the result of the classification process is the combined result of both selection

and classification. The values for PSE, PCE and PUE reflect this sequence.

When selection and classification are to be simultaneously and optimally

accomplished as a single integrated process, the separate consideration of PSE and PCE is

not meaningful; one can only measure the results of the integrated process, that is, PUE.

The effects of selection can be examined only by computing PUE separately for various

selection ratios.

2 See Appendix I B for an example in which an application population is corrected for the effect of a
truncation of the left tail.
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We have referred previously to an algorithm for the simultaneous and optimal

selection and classification process as the multidimensional screening model (MDS).

A similar, almost equivalent, process to the MDS can be described as follows: (1) make a

trial assignment, by means of an LP algorithm, of the entire applicant population, using

quotas proportional to the desired number to be selected and assigned to each job; (2) rank

order all applicants on the predicted performance measure corresponding to the job to
which the individual has been tentatively assigned; and (3) identify a cut score on each

predicted performance score continuum such that the desired quotas will be met by

accepting everyone on that continuum who has an equal or higher score.

There is obviously no justification for using such a multidimensional selection and •
assignment process for selection if the applicant is not going to be assigned to the job for

which he or she was tentatively selected. Coupling the selection aspect of an MDS process

with random assignment to jobs of the accepted personnel does not provide a useful means

of separately estimating PSE, since the predicted performance variables corresponding to 0

the job to which each person is tentatively assigned to effect selection cannot be

appropriately used in the estimation of PSE. Instead, the predicted performance variables

corresponding to the job on which each individual is actually assigned would have to be

used to compute the MPP scores to be used as an estimate of PSE. In such a random •
process, PCE would be zero and PSE would not be high enough to make the MDS process

attractive as a selection process. Thus assuming random assignment in the computation of

a PSE using an MDS-like process is not recommended.

Classification efficiency includes either or both of the hierarchical layering and

allocation classification effects that may be present and utilized by the classification

process. To capitalize on and measure hierarchical classification effects, a multiplicative
weighting of predicted performance scores may be used to reflect importance or value

accorded to each job or job level. Predicted performance scores are standardized and may 0

be multiplied by their validities prior to the application of these weights. The overall MPP

score reflecting the process efficiency measure is then obtained by averaging the MPP
weighted scores (if value weights are used) of those assigned to each job, weighted by the

number assigned to each job. In determining PCE, the maximum available information is

used for computing predicted performance scores contributing to the MPP score for the

final outcome (the PCE value). The assignments contributing to this determination must be

made using an optimal assignment process. To be fully optimal this process must use as
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the assignment variables the set of least square estimates that make full use of the test

battery or pool of experimental tests for which potential efficiency is being measured.

PAE can be measured in the same manner as PCE if HC effects are removed; that

is, if only allocation effects are present in the classification process. One way to assure that

the classification effects are due only to allocation effects is to ensure that the least square

estimates used to make assignments have equal means and variances in the population

being assigned, and remain unweighted with respect to either job validities or values. PAE

will be zero if the dimensionality of the joint predictor-criterion space is one, since the

prescription of equal means and variances for all test composites used in the assignment

process prevents the assignment process from capitalizing on any inequalities of MPP

scores across jobs that are due to differences in either validity or value weights. If the

classification process capitalizes on "hierarchical layering effects" present in the data, PCE

will exceed PAE. The difference between PCE and PAE might appear to be an appropriate

measure of hierarchical classification efficiency; unfortunately, hierarchical classification

and allocation effects are competitive when both are present and it is clear that HC effects

and allocation effects by themselves may approach the contribution to PCE provided by the

presence of both effects. The interaction of HC and allocation effects is additive to only a

very small extent in the achieving of the total PCE. This is illustrated with our four variable

model in Appendix 1B.

E. ASSIGNMENT APPROACHES FOR SELECTION AND
CLASSIFICATION

The personnel utilization process can take place in a single integrated stage or in two

or more stages in which he last stage(s) are classification and/or placement processes. The

military services have traditionally separated the process of personnel utilization into two

stages: a first selection stage and a second classification stage. This is done, in part,

because Congress mandates use of a single selection instrument (the AFQT) to determine

eligibility to enter the service. During the period of the draft, the AFQT both metered and

distributed manpower quality across the services.

In some military training programs evaluation takes place in such a way as to

constitute a multiple hurdle process (e.g., the Army helicopter pilot training program). The

use of separate criterion components, along with varying costs associated with

administering separate types of predictors, can also lead to a multiple hurdle selection

process. The use of a multiple hurdle process reduces selection efficiency, as compared to
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the use of a single least square estimate, and also complicates (but does not prevent) the

determination of operational and potential selection efficiency. The computaion of a PSE

index, when a multiple hurdle selection process is used, requires a correction for restriction

in range after each hurdle has taken its toll of the applicants. This correction must be

accomplished before computing the MPP score used as a measure of PSE at each selection

stage. If predicted performance scores are standardized to have a mean of zero at each

successive selection stage, the PSE indices are additive across stages; the sum of the PSE

indices at each stage will provide a PSE value for the total selection process.

Just as the multiple hurdle approach is sometimes substituted for the regression

equation selection process, many selection/assignment processes substitute less efficient 0

algorithms for the maximally efficient ones in order to accommodate personnel policies. In

many real situations, policy considerations take precedence over maximization of benefits.

Nevertheless, it is highly desirable to identify the processes and predictor sets which

provide the greatest potential efficiency and to use the process yielding the greatest potential 9

efficiency as the starting point. Modifications then can be incorporated into the process

allowing implementation of policy and consideration of administrative feasibility. In this

section, the effect of common assignment algorithms on the attainment of process

efficiency is explored. S

The most efficient process is one which utilizes the least square estimates of

predicted performance, each based on the full battery, as the selection/assignment variable

associated with each job, and that uses an algorithm that minimizes the MPP score in the
rejected group (when selection is involved, and maximizes the MPP score in the selected

and assigned group (when there is more than one job). The need to fill quotas for each job

forces a compromise; everyone cannot be assigned to the job ir. which he or she could do

best. However, the requirement can be imposed on a multidimensional selection algorithm

that no rejected individual can have a higher predicted performance score for a given job

than anyone selected and assigned to that job.3 A process by which individuals are being

selected simultaneously for several jobs can not be considered optimal unless it achieves

this objective.

The use of a hierarchical placement process may lead to an increase in MPP, and

thus to an improved PUE, and the consequent increase in utility. It has an interesting

3 This condition is not met by any selection algorithm known by us to be in operational use in a
multiple job situation; the MDS algorithm described in this chapter does meet this condition.
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similarity to the corresponding contribution of a hierarchical classification process. In a
placement process in which a single predictor is used to place a set of individuals in

0 hierarchical levels in one job, with the objective of maximizing MPP while meeting quotas,

the MPP standard score can be maximized by rank ordering the eligible individuals on
predicted performance and selecting from the top down on this continuum until the quota is

met, for each level. Rank ordering may be based on validity or other measures of mean
0 predicted benefit for that level.

The following multi-job hierarchical classification illustration closely resembles
hierarchical placement with respect to the manner in which the efficiency of the process is

0 computed. In our hypothetical example the PAE is zero (i.e., the joint predi-tor-criterion
space has a dimensionality of one); however, each of seven assumed jobs has its own

associated test composite for use in making assignments. The test composites are least

square estimates with each composite's standard deviation proportional to its validity. In
actual examples of this unidimensional type, the composite weights or test composition
may vary somewhat due to error variance interacting with a dimensionality only slightly

greater than one. In our example (unlike the Army's aptitude area composites which have
equal means and standard deviations) the test composites have diverse means and standard
deviations that are proportional to their validities (since they are PP variables) and thus can

take advantage of hierarchical classification effects. The validities given the seven jobs are

as follows: 0.65, 0.60, 0.55, 0.50, 0.45, 0.40, 0.35. Thirty percent of the applicants are
rejected and ten percent are to be assigned to each job in such a way as to maximize the
MPP score for those selected, while exactly meeting the quotas. This could be

accomplished with an LP program or by a much simpler process described below.

Our simple assignment process, one that is as optimal as an LP program for this
example, calls for placing each individual in rank order on his or her predicted performance
score corresponding to the most valid or (in other possible examples) the most valued job.
The ten percent of the applicants having the highest scores on the composite associated with

this job are assigned to this job. The next most valid job is then assigned the highest ten

percent of the remaining applicants on the corresponding composite score continuum, and
the same process is repeated for each job in order of its validity. Using entries from a

normal curve, one can compute the MPP scores of those assigned at each hierarchical layer

and thus compute the average MPP score used as an index of PUE. The resulting value for
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the MPP standard score (PUE) in our example is 0.315 (106.3 in terms of Army standard

scores).
4

One can easily compute the PSE value for the above example under the assumptions

that all selected applicants are randomly assigned, and the means and standard deviations

are equal across jobs. Using these two assumptions, the validity achievable with a

selection process would be 0.50 and the MPP standard score of the accepted group is

0.248. Thus, the gain achieved by hierarchical classification over the use of simple

selection and random assignment conditions, where the PAE is zero but validity differences

fairly large, is 27 percent.

For multidimensional selection, placement or hierarchical classification, as well as

for allocation, either a primal or dual LP program (or an approximating algorithm) is

essential to the practical implementation of the assignment process. The designation of the

terms primal and dual to a particular linear program algorithm is somewhat arbitrary since

the dual of a dual algorithm is the primal algorithm.

It is traditional to designate the simplex and the related algorithms that maximize

mean predicted performance (MPP) while meeting quota constraints as the primal version.

The simplex algorithm starts with a feasible (i.e., meets all the constraints) but less than

optimal solution. This initial solution is referred to as a basis and is the first step of a series

of iterative, feasible, solutions (each one more optimal than its predecessor) that continue

until the objective function (MPP score) is maximized.

The dual solution corresponding to our primal example would consist of an

algorithm which seeks to minimize, as the objective function, the difference between the

obtained and desired quotas (the constraint of the primal solution), while constraining each

iteration to yield the maximum possible MPP score (the constraint of the dual solution).

The dual solution is thus a sequence of iterative solutions in which the MPP score remains

a maximum for the set of quotas that are met, but the desired quotas are not met until the

last and final solution. The various algorithmic versions of the Brogden-Dwyer optimal

regions algorithm (Brogden, 1946b, 1954a, 1954b; Dwyer, 1954, 1957; Boldt and

Johnson, 1963; and Larkin, 1966) are the best examples of useful dual LP versions. The

dual is especially useful when the approximate meeting of quotas is permissible, scarce

resources prevent all quotas from being filled, or selection and assignment is to be

4 See Appendix 1B for the detailed computation of this example.
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accomplished simultaneously. The major disadvantage of the optimal regions solution is

that, unlike the simplex and most other primal versions, the solution is not obtained in a
0 finite number of steps in which each iteration is necessarily better than the last.

Several LP algorithms that alternate between primal and dual solutions in successive

iterations are also available. Granda and McMullins (1972) investigated an algorithm

which, if the gap between the highest and next highest score exceeded a specified amount

(one iteration of a simple dual algorithm), assigned individuals to the job corresponding to

their highest composite score. The much smaller remaining group of individuals would

then be assigned by means of a more time-consuming primal solution. The group to be

assigned with the primal algorithm could be kept quite small to the point where little more

than tie breaking was being accomplished, if a small degree of approximation with respect

to the objective function was considered permissible.

The optimal regions algorithm has the advantage of its logic being easily

understood. The use of this algorithm hinges on the following important theorem: when

the correct constant for each job, usually called a column constant, is added to all

individuals' test composite scores yielding adjusted scores corresponding to a particular job

or job family, the desired optimal solution is obtained by assigning each individual to his or

her highest adjusted score (Brogden, 1954a). In short, the use of the correct set of column

constants will achieve the optimal solution. Trial assignments to determine how far the

quotas have been missed, and the re-estimation of the column constants constitute the

successive iterations of an optimal regions algorithm.

The optimal regions algorithm provides a direct and easily understood way to

accomplish an optimal simultaneous selection and classification process. The three steps

for accomplishing such a process, using a primal algorithm, were described earlier. The

most direct way to accomplish a simultaneous selection/classification process would be to

modify the Brogden-Weaver algorithm slightly (Larkin, 1966). The modification involves

directly seeking the column constants that will provide for the assignment of the correct

number to each job. A particular advantage of this algorithm is that a set of quotas that

adds to less than the total number of applicants poses no difficulty and hence there is no

need for the creation of a rejection category.

The required column constants can be obtained as a by-product of many primal LP

algorithms. Thus, some analysts may prefer to use primal LP off-the-shelf software to

0 compute the column constants needed for the selection/assignment process. These column
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constants can then be closely approximated from inspection of adjusted predicted

performance scores (or test composite scores) for which assignments have been designated

using a primal LP algorithm. The required column constants are computed by first

subtracting each person's largest score from each of his other scores. A person's largest

adjusted score will then be equal to zero and all other adjusted scores will have a negative

sign. The adjusted scores corresponding to the job to which each person was assigned are
rank-ordered, and the adjusted score located at the cut point which will provide the correct

number in that job is identified. Each such negative adjusted score is the appropriate

column constant to be subtracted (or changed to a positive number and added) to obtain the

optimal regions solution. This column constant obtained from the simple computations

described above that started with a primal LP solution to the classification problem in an

applicant sample may approximate the exact quotas desired for both selection and

assignment closely enough for operational purposes, when the same column constant is

used both to select and to assign; if not, further exactness can be achieved in one or more

further iterations using one of the Brogden-Dwyer algorithm versions.

Prescribed personnel policies may prevent the use of off-the-shelf LP algorithms,
or the use of existing computer programs, in implementing a classification process. This
may be the case, for example when: (1) there may not be a sufficient number of individuals

in the assignment pool to meet all the quotas; (2) policies may require two or more objective
functions to be successively maximized using the slack left over from the prior

optimizations to achieve the later ones; (3) constraints may need to be prioritized by policy

when all constraints cannot be met; or (4) constraints may need to be successively relaxed, I

in accordance with priorities prescribed by policy, until a feasible solution can be obtained.

In general, such complications are dealt with by modifying LP algorithms to such extents

that modified programs commonly assume a name of their own.

One such class of algorithms, goal progro-nming, accomplishes a constrained 6

optimal solution by establishing a hierarchy of Jjecdve functions (e.g., travel cost,

meeting applicant preferences, accomplishing a desired distribution of quality into the
various job families, the MPP score), optimizing objective functions in the indicated order,

with a high probability that all the slack required for further progress will be used before

the end of the list is reached. Considering that most of these complications will have the

effect of reducing the MPP standard score, the difference between operational and potential

classification efficiency is enlarged through their use; competing constraints and objective

functions .an only reduce MPP.
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The search for simplicity in assignment algorithms also increases the gap between

operational and potential classification efficiency. For example, during the early years of

the all-volunteer force the Army had great difficulty meeting recruiting quotas; consequently

the then existing complex LP driven assignment system was discontinued. The use of

cutting scores on aptitude areas once again was prescribed for use as the only source of

operational classification efficiency. Assignments largely were determined by what the

recruiter could sell to a potential recruit. The recruit, upon acceptance, entered the Army

with a contract that specified either the job family or the geographic area to which he or she

would be assigned. The recruit needed to meet only the minimum aptitude area standard

for a job.

F. THE INITIAL IMPLEMENTATION AND EVOLUTION OF A
CLASSIFICATION PROCESS

As mentioned in Zeidner and Johnson (1989a), the introduction of the Army

Classification Battery in 1949 was a major innovation for military personnel utilization.

The ACB was developed with differential classification in mind, to capitalize on inter-and-

intra individual differences. The origin of the military's current use of a two-stage selection

and classification process originated just before the introduction of the ACB. The history

of the use of the ACB, and later the ASVAB, is a case study of personnel policy impact on

test battery usage.

From the time of implementation of the ACB, the operational classification process

greatly underutilized its classification potential. In the mid 1960s computer and software

technology developed to the point that the use of an LP algorithm for large-scale

assignment became practical and soon after an LP capability was installed. But the

perceived need to reduce costs, meet job preferences, and distribute quality appropriately,

left little room to maximize MPP. It should be noted, however, it was the use of

differential selection and separate cutting scores for each job, that the developers of the

ACB visualized as the enabling mechanism for the classification process. It was this

mechanism that was relied upon to make the ACB more efficient than its predecessor, the

Army General Classification Test (AGCT), a single selection and placement test.

Just before the change to the ACB, the AGCT was used in two stages, first for

selection, and then for hierarchical classification to jobs. The classification process used

cutting scores corresponding to a school course or an MOS (course/job) hierarchy; the
0 probability of failure was minimized by using higher cutting scores for course/jobs having
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higher validities and/or failure rates. The technical school courses had higher validities and

failure rates than the combat arms courses. Consequently the average minimum required

cutting score for the former was much higher; considerable dissatisfaction was expressed

however, because the combat arms were not receiving adequate numbers of high quality

personnel.

The minimum required aptitude area scores for Army school courses and some

MOS were at one time determined for operational use on the basis of research data. These

cutting scores were defined as the point where fifty percent of the soldiers were predicted to

be unsatisfactory (i.e., one half of all soldiers with that score could be expected to fail the

preparatory school course). Cutting scores computed in such a way reflected both the

magnitude of the validities and the difficulty of the course. In earlier years, cutting scores

tended to be considerably higher for technical MOS than they are today. They were

drastically lowered in the early post-Vietnam era of the all-volunteer force when the Army

experienced shortages in higher quality personnel. At one time cutting scores were further

reduced to ease the entry of minorities into the Army and to reflect the prevailing view that

all recruits were trainable, "trainees did not fail; the trainers failed," and none but outright

disciplinary cases should fail. Even at present it is clear that cutting scores are much lower

than they should be if the tests are to provide adequate classification effects in the absence

of an LP-type assignment program. It is indeed fortunate that the new Enlisted Personnel

Allocation System (EPAS), mentioned in Zeidner and Johnson (1989a) and more fully

described in Zeidner and Johnson (1989b) is now under development. EPAS will no

longer rely so completely on cutting scores.

The use of cutting scores on a single instrument, such as the AGCT, could not

provide above average MPP scores to some groups without assuring that other groups

would have balancing below average MPP scores. The possibility of capitalizing on intra-

individual differences in predicted performance scores, assigning individuals according to 0

their higher scores as often as quotas permit, offered an attractive solution to this problem.

As noted earlier, using ACB aptitudes area composites, as many as 80 percent of the

recruits could be assigned to jobs whe, e their predicted performance scores would exceed

the average performance in a randomly assigned population. This potential, if realizable,

could have solved the quality distribution problem that was plaguing the combat arms.

ACB based assignments were accomplished initially by military counselors at each

basic training camp that met quotas for the assignment of soldiers to school courses and

other training after basic training. It was intended that each soldier would be assigned to a
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job family corresponding to one of his two highest (of ten) aptitude area scores, but no

special effort was to be made to achieve an assignment to the higher of the two. Each

school course or on-the-job trained MOS had its own aptitude area cutting score that also

had to be met. Consideration by the counselors of these two factors provided some gain in

the operational classification effectiveness, but this gain fell far short of the PAE of the

battery.

Sometimes counselors, in making classification decisions, give overriding

consideration to factors other than predicted performance. These include: (1) the reduction

of travel costs from basic training to the next assignment; (2) the matching of soldiers'

preferences; (3) the meeting of a variety of job or course prerequisites (e.g., prior

completion of a course in trigonometry, required physical profiles, complete absence of

adverse court records or of color blindness, and a required length of remaining enlistment);

(4) the distribution of quality (e.g., increasing the number of persons with higher aptitude

area scores assigned to the combat arms). These considerations, singly or combined,

inevitably reduce the MPP score resulting from classification.

The decentralized person-job matching system in which the counselor made the

final decision in the presence of the basic trainee was later centralized to a Pentagon location
* and mechanized to the extent of placing each individual's information on a Hollerith card.

Sorters were utilized in a cascading approach to identify assignments. At least one

additional constraint was introduced: the combat arms were given the same proportion of

college graduates as the other Army branches in initial assignment.

The developers of the ACB wanted to achieve more of the PAE inherent in the

battery through use of the battery in conjunction with the Brogden-Dwyer optimal regions

algorithm. The algorithm was first described by Brogden in 1946, and then presented as a

more precisely described algorithm by Dwyer in 1953. It was not surprising that Brogden,

in the early 1960s, encouraged research to program and demonstrate an LP type assignment

process.

An improved version of the Brogden-Dwyer algorithm, the Brogden-Weaver

algorithm (Boldt and Johnson, 1963) was devised and programmed on the IBM 1401

computer, a relatively small computer primarily used for 1/0 support of the larger IBM 705

personnel data processing computer. Using the Brogden/Weaver version, a near-optimal

solution for 3,000 soldiers and 75 jobs was determined in a little more than two hours. All

the constraints required of the sorter operation were implemented except that quotas for
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some jobs, designated by policy, were defined by a range, a compromise that also

sometimes occurred in the sorter supported process. The improvement in the MPP was

undoubtedly considerable, although not documented to the extent desirable (Boldt and

Johnson, 1963). It was unfortunate that results for the operational assignments comparable

to those available for the demonstration were not provided by the operational office

conducting the sorter supported process; the results from the demonstration could only be

compared to less comparable operational data as described below.

A comparison was made between the aptitude area mean scores resulting from a

demonstration of the optimal regions method using 5,128 enlisted men (primarily draftees)

in January, 1961, and those resulting from the sorter supported process using 1,204

draftees entering during October of 1959 (Boldt and Johnson, 1963). The comparison

was made in terms of Army aptitude area composites standardized to have means of 100

and standard derivations of 20 for the tests comprising these composites in a youth

population; the aptitude areas had standard derivations ranging from 17 to 21 in the recruit

population. The aptitude area mean scores ranged for the computer assigned group from

109 for "infantry" to 121 for "general technical." The sorter supported assignment yielded

a range from 98 for "infantry" to 114 for "clerical," and only 103 for "general technical."

Except for "clerical" which had the same result for both groups, the gain for the computer

assigned group was not less than 8 points (for "electronics") and averaged 11 points. Even

after noting that these two groups obtained at different times of the year would not have

been compared if any other data could have been obtained, one is struck with the potential

this approach had for both solving the quality problem in the combat arms and increasing

the MPP score for first job assignment. Also there is little doubt that the number of human

errors in the assignment process would have been significantly reduced.

There was a growing recognition in the mid 1960s that a computerized optimal

assignment model was desirable. The Marine Corps became highly interested in the Army

results and developed a quite different primal LP algorithm, one that was both more flexible

and efficient for implementing their objectives. This procedure was successfully used to

make operational assignments in the Marine Corps (Hatch, 1966, 1970). Encouraged by

the success of the Marine Corps, the Army utilized an assignment computer program that

evolved into a full-blown system, the "ACT II," which later provided the basis for both the

Air Force and Navy classification systems, long after the Army ceased using ACT II for

making initial assignments.
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ACT 11 was both an efficient and flexible classification process that had many of the

features of goal programming. It permitted the sequential optimization of successive

objective functions (e.g., transportation costs, MOS preference, aptitude area scores), the
sharing of quota shortages, and the sequential relaxation of constraints. For example, all
constraints could be successively relaxed to permit the assignment of the entire personnel

pool. An impressive degree of flexibility existed for implementing policy changes without

reprogramrming the system (Hatch,1970).

ACT II appeared to be heading toward a happy future, considering the capabilities

available from its software. Unfortunately, policymakers were not confident that the Army
should sacrifice the savings of travel costs for increased MPP nor to deny an enlistee (as

contrasted to a draftee) his job preference if he met the required minimum score. As the
changeover to an all-volunteer Army occurred in 1973, the sophisticated ACT II features
for accomplishing centralized batch assignments were no longer useful. What was needed

instead was up-to-date information on which quotas were open and a means for reserving a

slot for a specific MOS immediately upon extending a promise to a new recruit; an
information and communication system evolved rather than a decision system. Thus,

EPAS was initiated to fill a vacuum rather than to improve an LP driven classification

system already in use.

It would appear that the era of the batch primal LP program came to an end,
gloriously enough, with the demise of ACT II. Recruiting needs precluded the luxury of

batch assignments. Fortunately, however, computer and communications technology has
now advanced to the point where person-by-person dual LP programs can be part of a
combined, simultaneous recruiting and assignment system. The required concepts have

been available since 1946 (Brogden, 1946b).

G. DECENTRALIZED CLASSIFICATION: PERSON-BY-PERSON
ASSIGNMENT ALGORITHMS

Making assignment decisions for a recruit or soldier without waiting to accumulate

a large enough personnel pool to justify use of a batch algorithm is referred to as a person-

0 by-person algorithm. It is also called sequential assignment by the Air Force, and line-by-
line assignment by others. Such an algorithm can provide an exact solution for the defined
population as N approaches infinity; the quotas for this defined population will usually be
estimated as the desired input that mirrors requirements, modified by insights into the

economy anc. demography of the nation that may force a compromise between requirements
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and recruiting estimates. The quotas contained in a batch program, such as ACT U, were

similar estimates of future requirements.

A practical person-by-person assignment process, using Brogden's concept of

additive column constants, could be provided by computing, on a weekly basis, the next

four weeks of estimated input, as either a pool of synthetic, generated entities, or as a

covariance matrix which could in turn be used to generate synthetic entities. (See Chapter 4

for a description of the procedure.) This pool of entities could then be used as the data to

obtain an LP solution meeting specified quotas and other constraints. The resulting column

(job) constants would then be used for one week to make person-by-person assignments.

A job constant would be added to the corresponding test composite and these adjusted

scores for each job compared within the individual. Assignment to the largest adjusted

score is an optimal assignment for the defined population and the recruit. In the event that

the recruit cannot be given an optimal assignment, the recruiting or assignment counselor

can readily see the penalty incurred on the objective function exacted by each alternative

choice of jobs.

In a person-by-person assignment process, the quotas for the start of a particular

course would not automatically be met. There would be an obvious need to adjust the

reporting dates of the recruits to meet quotas on specific start dates for courses. •

The use of a batch LP program, whenever a specified number of applicants is

accumulated, would not only delay the decision process, and possibly result in the loss of

some potential recruits, but also could be expected to make poorer decisions with respect to

the input population, reflected by a lower objective function value than provided by the

above person-by-person algorithm. The above statement presumes that the "batch"

assignments are optimized with respect to fluctuating constraints (e.g., quotas, quality

goals, etc.), and weekly or biweekly input characteristics. In contrast, the person-by-

person algorithm is based on the population constraints and input, but quotas would

necessarily be imperfectly met over small time periods although closely approximated over

the sum of these periods. Thus we see that the practicality of a person-by-person

assignment algorithm depends on being able to make some assignments from a waiting list 0
in order to meet weekly enrollment goals for individual school and training courses.

Horst (1960) and Sorenson (1965b) proposed a person-by-person assignment

process that would use a multiplier matrix converting each applicant vector of test

,.,.,nposite scores into a surrogate assignment vector approximating one row of the
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assignment matrix. In each row of such an assignment matrix, one element is unity and all

others are zero. The applicant would then be assigned to the job family corresponding to
the highest element in the surrogate assignment vector. This method has the advantage that

the required transformation matrix can be computed directly from the matrix of covariances

among the test composites in the input population and the validities, without the generation

of a pool of entities and the conduct of a simulation. For the previous method [the use of

column constants applied on a line-by-line implementation of Brogden's (1946b, 1954a,

1954b) algorithm] the difference between the highest adjusted score and the adjusted score

corresponding to the alternative, less optimal job to which an individual was assigned had

meaningful implications regarding the resulting reduction in the objective function value.

The significance of such a difference between the best and an alternative assignment in the

Horst-Sorenson method is not known.

Ward (1958) proposed the use of a disposition index (DI) that could be used by

counselors required to make assignments. This computation of a set of indices to be used

with an individual being counseled, one DI for each job being considered, would require

knowledge of the set of predicted performance scores for the individual at hand, the MPP

score (across jobs) for the individual, the MPP scores for each jcb (across individuals), the

overall MPP score for the expected input over some prescribed time frame, and both the

number of individuals and the number of jobs to be considered in the designated time

frame. Assignment of the individual to the job corresponding to his highest DI was

recommended.

In his two introductory examples, Ward used three individuals and three jobs, with

the quota for each job being one. His final example had the objective of minimizing cost,

rather than maximizing performance, and consisted of three categories of people (of

unequal numbers) to be assigned to five jobs with unequal quotas. In this last example,

0 personnel were to be assigned to a job in ascending order of their lowest DI. This

proposed algorithm required a batch mode for its implementation; otherwise there was no

provision for meeting quotas. Alternatively, frequent recomputation of the DIs would be

required. This algorithm appears to have no obvious advantages and some apparent

10 disadvantages compared to the direct addition of column constants to job performance

estimates and the assignment of each individual to his highest adjusted score. The latter

procedure produces a maximum MPP score and can be made to produce the exact quotas

by appropriate scheduling of recruits into basic training.
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By the 1980s, Ward's DI approach had been refined and incorporated into the

optimization module of the Air Force personnel acquisition and assignment system

(PROMIS/PJM). This "sequential" process provides an assignment for one person at a

time, the optimization decision taking place within the context of having only one person

and many jobs. Predicted competition is estimated and a modified DI calculated so that the

jobs can be rank ordered in terms of highest to lowest total system payoff. The relative

importance of each potential person-job match for an individual could also be determined as

an optional capability, if desired. The present effectiveness of the Air Force sequential

assignment system is due primarily to Ward's contributions.

Cardinet (1959) proposed a graphical person-by-person assignment aid which

could be overlaid onto a graphical (profile) display of each individual's predicted

performance. Cardinet assumed that a counselor would be more comfortable with the use

of profiles; thus a method of combining accurate classification with a non-demanding

process was provided to the counselor. The principail disadvantage of this approach was

the effort and cost required to develop the standard profiles to represent each job (or job

family), and to represent each applicant's set of scores as a profile.

Brogden (1954b) is cited by Cardinet as the source of the concepts that stimulated

the development of his approach. As Cardinet pointed out, in comparison with Brogden's

method, the advantage of the profile is the ease with which it can be applied by the

counselor. The same -esults would be obtained by adding the appropriate column

constants, one corresponding to each job, to each predicted job performance value and

recommending those jobs with the higher adjusted scores. Similarly, the counselor could 6

refer to a table containing minimum requirements for each job to determine if the applicant

can be selected for the job to which he would be assigned optimally if minimum eligibility

for that job is established. Only those applicants lacking eligibility for any open job would

be rejected. 0

Cardinet proposed the use of his standard profiles for multidim, 'isional selection

and classification. For the former (called differential selection by Cardinet at one point and

multiple selection at another), "a minimum is fixed separately for each predicted success,

and a subject is eliminated if he does not reach the minimum in any job" (Cardinet, 1959,

p. 197). If a candidate is selected he is then assigned to the job identified by comparison of

the individual's profile with the same standard profile used for selection. The individual, in

effect, is assigned to the job in which his predicted performance exceeds the minimum
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score used for selection by the greatest amount. This is entirely consistent with the MDS

process described earlier in this chapter.
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involving any number of jobs. When r is less than 1.0 we must use a more complex model

and restrict ourselves to the study of hypothetical situations containing only two jobs.

We use the same notation in Appendix IA and 1B as we use in Chapter 2

appendices to describe Brogden's 1959 model: r represents the correlation among PP

scores; and R their validities (when equal across jobs). Validities are also represented in

the format raA where a is the predictor and A is the criterion.

In Appendix lB we define a more general model in which the predictor need not be

a predicted performance measure, but all of our hypothetical examples and computational

demonstrations use computing formulae that assume each pair of criterion variables have

corresponding LSE variables, a and b. Thus raA and rbB are multiple correlation

coefficients that are also the standard errors of a and b, respectively. Specifying a and b as

LSEs permits us to compute raB as rab times rbB, and rbB as rab times raA. Our model needs

only the selection ratio (SR) and the triplet (rab, raA, rbB) as model input to completely

define the hypothetical operational situation. In the more general model of Appendix IB, in

which a and b are not LSEs, the model also requires as input, raB, rBa, and the standard

deviations of both a and b (Sa and Sb); both SA and SB are also required when SR is less

than 1.0, but can be readily computed from the previously cited input.

Thus we see that all of our examples presented in both appendices of this chapter

require knowledge only of r, each Rj and the SR to define the operational situtation and to

accomplish the computations required by the model. Assuming a normal distribution of the

predictor variables and the use of LSEs as predictors, all other values required by the

models (algorithms) for outputting MPP can be computed from these input values.

APPENDIX 1A.2: HIERARCHICAL CLASSIFICATION MODEL AND
EXAMPLES

This appendix describes a simple approach for optimally assigning personnel on the

basis of a single variable used for both selection and classification. When this singik

predictor variable has disparate validities across jobs, and the continuum of predictor scores

is matched against hierarchical layers of jobs rank ordered on the magnitude of the predictor

validities, hierarchical classification is occurring. The job having the highest validity and a

quota of nj receives those nj indivuals having the highest predictor scores, the job with the

second highest validity and a quota of n2 would receive the n2 unassigned individuals with

the second highest test scores. The predictor test continuum is marked off from the top
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down, dividing the continuum into layers, or score intervals, until all personnel are

assigned to a job.

This process of matching hierarchical layers of rank ordered personnel and jobs

accomplishes an optimal assignment of people to jobs, a process which maximizes the

mean predicted performance while meeting job quotas. The hierarchical layering solution

* provides the same solution (the same set of personnel assignments) as is provided by using

a linear program (LP) to assign personnel to jobs on the basis of predicted performance

(PP) scores--maximizing an objective function of mean predicted performance (MPP)

standard scores.

* For N individuals that were assigned by a hierarchical layering process, assuming a

normal distribution of PP scores, we can easily compute the mean PP score for each job

(i.e., for each interval or layer of the continuum), using values from a normal curve table.

Letting ni/N = pi, n,2/N = P2 ...... nm/N = Pm, for m jobs, we commence with pl, the

upper tail of the normal curve. At the point on the abscissa, x1, that cuts off an area of the

normal curve equal to Pl, we label the normal curve ordinate corresponding to x1 as z].

The required mean for the top layer of the predictor continuum is zllpl, the mean for the

second most valid job is (z] - z2)/P2, and the general term for the predictor mean of the jth

• most valid job is (zj+i - j)/pj, with j ranging from I to m.

The sum of of these interval means, weighted by the validity of the jth job and pj, is

equal to the MPP standard score. That is, MPP = Xm (Zj+i - zj)Rj. The interval means for

* intervals lying primarily below the mean, of course, have a negative sign.

The HC classification example described in the text has a selection ratio of 0.7 and

seven jobs, each of which has a quota of N/7. The validities of the seven jobs are: 0.65,

0.60, 0.55, 0.50, 0.45, 0.40, 0.35. Interpolating the table entries from a normal curve

table provides values for z1 through Z7 as follows: 0.17543, 0.27989, 0.34771, 0.38637,

0.3989, - 0.38637, - 0.34771. Using these values in the formula provided in the

paragraph next above yields a MPP standard score of 0.315. We now compare this result

with the magnitude of the MPP that results from these validities, optimal selection with an

3 R of .7 and a random assignment of personnel to jobs.

Random assignment of the selected upper 70 percent of the PP continuum can be
depicted as a single interval, [(Z1 - z7)/0.7] R, where R is the average of the above

validities (i.e., 0.5). The mean of this single interval of selected individuals is 0.4967.
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Thus, MPP for the random assignment case is 0.4967 times 0.5 or 0.248. HC

classification effects can be identified as the difference between 0.315 and 0.248, or 0.067.

Only a two job situation can be evaluated using the general model of Appendix 1B

which permits a complete range of values for r. Using the relatively simple situation

described above for two job criteria, A and B, and the correlation between the two

predictors set to 1.0, we apply our more general model and note that we obtain the same

results. Our common example to be compared across the two appendices calls for a

validity of 0.6 for one job and 0.4 for the other, an SR of 0.7 and the correlation between

predictors, a and b, of 1.0. The mean of the tail containing the upper 35 percent of the

population is 1.05826, while those in the next 35 percent of the continuum have a mean of
- 0.0648. Thus the MPP standard score for this two job example can be computed as

follows:

MPP = (0.6 (1.05826) + [0.4 (-0.0648)1/2 = 0.3045.

Comparing the above MPP value with that obtainable with random assignment
provides a gain in MPP attributable to HC of 0.0562. Comparing this result with that

obtained for the seven job example suggest there is little or no gain to be expected from

adding more jobs to a HC classification situation. This is in contrast to the major increase

in classification effects obtainable from an increase in the number of jobs when allocation

effects are present. Brogden's 1956 model shows an increase of MPP by a factor of 2.4

for an increase in the number of jobs from 2 to 7, when the SR equals 1.0 and the

classification effects are purely allocation. This increase would be by a factor of 1.7 when

SR = 0.7.
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APPENDIX 1B

A FOUR VARIABLE MODEL FOR EVALUATING

ALTERNATIVE CLASSIFICATION STRATEGIES

APPENDIX 1B.1: THE GENERAL MODEL

In this appendix we describe a model for evaluating the utility resulting from using

two test composites to optimally assign personnel to one of two jobs. We then use this

analytical model to evaluate the effect of several patterns of predictor characteristics on

utility as measured by mean predicted performance (MPP).

ID We commence with a general formulation of our model in terms of two assignment

variables, "a" to be used as a measure of predicted performance in a job for which the

performance criterion is the variable "A", and "b" a variable which has the same

relationship to the second job (a job with the criterion variable "B"). Considerable

0 simplification of the general model results from specifying that a is a least square estimate

of A based on all predictors, making "a" an FLS composite; "b" is similarly related to B.

Further simplification occurs from either making the validities of the two assignment

variables equal to each other, or by making the two assignment variables perfectly

4P correlated although with differing validities of a against A and b against B. These

characteristics are of interest since they define processes of pure allocation and pure

hierarchical classification, respectively.

We use our four variable model to demonstrate utility effects of optimal assignment

under two separate selection/classification processes: (1) using a selection ratio of

100 percent, assuming the total multivariate Gaussian distributed population is entirely

assigned to the two jobs; and (2) using a fifth variable, g, on which to truncate input, with

a selection ratio of 70 percent, again assuming a multivariate Gaussian distributed applicant

population. In process (2) selection will be made on variable g for both job A and job B:

this is in accordance with a two-stage process for sequential selection and classification.

We show that three examples used to demonstrate process (1) can be directly verified

against Brogden's results (1959, p. 189).
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Our four variable model is based on the concept that a cutoff score on the

continuum, d = (a - b), divides between those persons appropriately assigned to job A or

to job B. Any desired pair of quotas for the two jobs can be obtained by an appropriate

selection of a cutoff score on d. We have arbitrarily chosen a 50 percent split between the

two jobs for use in all of our examples.

The mean predicted performance standard score for those assigned to job A can be

denoted as (MPP)A. The mean of the criterion A for those assigned to job A can be

denoted, for a quota of q, as Mq; Mq = zq/q where zq is the ordinate of the normal curve at

the cutoff point on d. Mp is similarly defined as zp/p where zp is the ordinate of the normal

curve at a truncation point on each of the selection variables (a and b). The selection ratio is

represented by p.

Sd is the standard deviation of d and rda is the product moment correlation

coefficient between d and A. Using this notation, (MPP)A = (rdA Mq) + raA Mp , and

(MPP)B = (-rdB) M1q+ rbB Mp. The value of Mp will be zero when SR = 1.0. When W

SR > 1.0, Mp is non-zero and both rdA and Sd must be corrected for direct selection effects

resulting from the truncation on the selection variable. This correction process will be

discussed in Appendix 1B.3.

Our four variable model is essentiallly represented by the above computing formula

for (MPP)A, the corresponding formula for (MPP)B and the aggregate of these two values
into (MPP)t; (MPP)t = q (MPP)A + (1-q) (MPP)B. The source of this computing formula

is a formula for the biserial correlation coefficient. Using our notation, this formula can be
written as rdA = [(MPP)A - Mp)/SA Mp; SA = 1.0. In this equation rdA can be either a

biserial coefficient, or, if normality assumptions are met, can be a product moment

coefficient. Inserting a value for rdA and solving for (MPP)A provides the basic formula

for our model as follows:

(MPP)A = rdA Mq SA + raA Mp (1)

Similarly, we can compute (MPP)B using a reversed d to compute what is essentially -rdB;

thus our other basic formula is

(MPP)B = rdB Mq SA + rbA Mp (2)

We can also reflect the effects of weighting a and b to provide either variances

proportional to their validities or equal variances across the two predictor variables. The

latter situation assures that all assignment effects are free of a contribution from hierarchical

1-56



layering, and all classification effects are thus pure allocation. Our demonstration is solved

with and without hierarchical layering, i.e., hierarchical classification (HC) effects.

We make several assumptions to provide simplification of the basic formula

appropriate for use in several of our examples. First, we assume that a is an FLS

composite providing an LSE of A, and b is similarly a LSE of B. Thus rdA = rda, Sa =

SraA, and rab = rbA/Sa = raBISB. When we set values for Sa, Sb, and rab we are also setting

values for rbA and roB, values required by the basic formulation of our model. Note that Sa

is also the validity of against A (raA), and Sb is the validity of b against B (rbB). We

arbitrarily set q equal to 0.5 for all examples, although our model could easily be used to

examine the effect of unequal quotas on utility.

Defining each of 8 conditions in terms of Sa, Sb, and rab we can compute (MMP)t

using the following equations:

rdA = (r. 4 S. - rbA SbV'Sd SA); (3)

SA = 1.0; rbA = ra4 rbA

rdA = (ra4 Sa - rab Sa Sb)/Sd - (4)

Sd = (Sa2 + Sb2 - 2 ab Sa Sb) 1/ 2  (5)

APPENDIX 3B.2: DEMONSTRATING MODEL ASSUMING NO
SELECTION; THE FOUR VARIABLE MODEL WITH SR = 1.0

In the special case where raA = roB = Sa = Sb = R, we see that the numerator for

rdA is equal to R2 (1 -rab) and the denominator, Sd, is equal to (2)1/2 R (1 - rab)1/2 .

Simplifying and inserting into the basic equation for our model yields: (MPPA)a =

R (1 -rab) 1/2 MO 50 (2)1/2. The conditions defined by setting raA = Sa and rB = Sb

corresponds to Brogden's model (1959) when there are only two predictors and all

applicants are selected and assigned.

It is useful to know that simplifying the basic formula for rdA by setting Sa and Sb

equal to 1.0, while permitting different values for raA and rbB, yields the same simplified

model defining equations as results from setting ra,4 rbB, Sa, and Sb equal to the average of

ra. and rbB. In the general equation for rd.A, with Sa = Sb = 1.0, the numerator simplifies

to r,, (1 - raB) while the denominator, Sd, simplifies to (2)1P - (1 - rab)l"2. We note that

rdL is equal to raA times [(1 - rab)/21 ,'2 and rdB cqual to rbB [(1 - rab)/2]1/2 , giving the

same value for (MPP)t as is found in the paragraph above where Brogden's assumptions
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are fully met. It is easily verified that this equation provides the same assumptions and

results as does Brogden's model (1959) for his no selection, two-job case.

Thus it is seen that when the assignment composites have equal variances, as is true

of the operational assignment/classification systems for all the military services, the

contribution of HC effects vanishes and the same CE exists in our two job examples for

two validities of 0.6 and 0.4 as for two equal validities of 0.5 and 0.5; they have the same

value for (MPP)t.

Using the relationship ra = Sa, rbB = Sb, raB = rab rbB, and rbA = raB raA--all a

result of defining both a and b as LSEs of A and B respectively--our formulae for rd and

rdB simplify to the following:

rdA = (Sa 2 - rab Sa Sb)/(Sa2 + Sb2 - 2 rab Sa Sb)1"2  (6)

-rdB = (Sb2 - rab S, Sb)/(Sa2 + Sb2 - 2 rab Sa Sb) 1P (7)

When rab becomes less than (Sd/Sa) the sign of rdB changes to negative. As rab approaches

1.0, the value of rdA approaches Sa and (-rdB) approaches rbB. It is easily seen that this

model simplifies to the model described in Appendix 1A when rab = 1.0.

Twelve examples in which: (1) SR = 1, (2) validities are equal to 0.5 and 0.5 or

0.6 and 0.4 for A and B, respectively, and (3) rab ranges from 0 to 1.0, are described and

results in terms of MPP provided in Table 1B.2.1

Table 1B.2.1. Demonstration of the Four Variable Model

(Twelve Examples with SR = 1.0)

Example rab Sa Sb rdA -rdB MPP

1 0.0 0.5 0.5 0.35355 0.35355 0.282
2 0.5 0.5 0.5 0.25 0.25 0.199
3 0.7 0.5 0.5 0.193649 0.193649 0.154
4 0.8 0.5 0.5 0.153114 0.158114 0.126

5 0.9 0.5 0.5 0.111803 0.111803 0.089
6 1.0 0.5 0.5 0.0 0.0 0.0

7 0.0 0.6 0.4 0.4992 - 0.2219 0.288
8 0.5 0.6 0.4 0.4536 - 0.0756 0.211
9 0.7 0.6 0.4 0.4476 + 0.0187 0,171
10 0.8 0.6 0.4 0.4556 + 0.0868 0,147
11 0.9 0.6 0.4 0.4854 + 0.1888 0.118
12 1.0 0.6 0.4 0.60 + 0.40 0.080
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Although the MIPP values in Table IB.2.1 were computed using our four variable

model, an entirely different approach than was used by Brogden (1959), the results for
examples 1 through 6 that meet Brogden's assumptions of equal validities are precisely the

same as his. Similarly, examples 6 and 12, which can be solved using the model of

Appendix 1 A, yield the same results across the two models. Of our twelve examples, only

7 through 11 require the more complex model of Appendix 1B.

We pay particular attention to example 10, since a key example with an SR of 0.7

described in the next section has validities of 0.6 and 0.4 with rab equal to 0.8. This

example is used to illustrate the use of the four variable model in a two-stage selection-

classification situation. Note that here, with no selection and rab = 0.8, an MPP of 0.147 is

achieved with hierarchical classification (HC) effects present. This value is reduced to

0.126 when the HC effects are not allowed to function, as when operational test

composites are given equal SDs. This is a reduction of 14.3 percent due to elimination of

HC effects. When rab = 0, this reduction is much less--the ditfer -ice between 0.288 and

0.2S2--a 2.1 percent reduction.

The allocation and HC processes are clearly not additive, but are instead

competitive. In this competition HC becomes predominant as rab approaches 1.0 and

allocation becomes predominant as rab approacb-zs zero. The effect of allocation in

competition with HIC intuitively appears to strengthen as the number of jobs is increased.

ks noted before, adding jobs over a minimum of two contributes little or nothing to the HC

effects on MPP. On the other hand, adding jobs has a major positive effect on MPP in the

allocation situation. We see below that allocation is also strengthened when selection is

intro-'iced.

APPENDIX lB.3: DEMONSTRATING THE MODEL WITH SELECTION;
TIlE FOUR VARIABLE MODEL WITH SR = 0.7

The application of the four variable model to hypothetical operational situations in

wAhich SR and rab are both less than 1.0 requires the use of variables corrected for the

selection effects of a single predictor variable (referred to here as g). We assume a

normally distributed g, along with a and b, with means of 0 and SDs of 1.0 in the

population from which selection is accomplished. Correlation coefficients and SDs

corrected to reflect the effects of selection on g are written in bold face and underlined.

Our four variable model written in its most general form includes the element AfM,

which as the mean ot the selected group was zero, and thus ignored, in our previous 12
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examples. Also, both SA and SB are equal to 1.0 when SR = 1.0 and thus did not need to

be written explicitly as a multiplier in our computing formulae. Our basic model for use

when SR < 1.0 is as follows:

(MPP)A = LdASA MqA + rgA Mp (8)

(MPP)B = (-rdB) SB MqB + rgB Mp (9)
0

Since we define our examples as having equal quotas for each job, MqA = 0.7978

and MqB = - 0.7978. The value of Mp, as the mean of the upper 70 percent of a population

for a normal deviate with a mean of zero and an SD of 1.0, is 0.49673. We also require

the SD of a truncated normal deviate reflecting the selection effects of an SR of 0.7. The

standard deviation of this truncated normal deviate will be designated as Sg.

We obtain Sq by integrating the normal density function, using integration by parts,

giving us the following computing formula:

q2 = (xz/p) - (z/p) 2 + 1 ,(10)

wAhere p equals the SR (.7 for our examples), x is the abscissa at the point that cuts off the

lower 30 percent of the applicant population, and z is the ordinate of the normal curve at

this same point. For our examples in which p = 0.7, x = 0.52441, and z = 0.34771,

Sg = 0.49277.

Our first example is for a situation in which a single variable, g, is used to select
and assign personnel to both of two jobs, A and B; r,,4 = 0.6, rgB = 0.4. We adjust rgA

and rgB to effect a restriction in range on g using the two formule given below:

irgA)2 = (rgA2 Sg 2)/[1 + rgA2 (Gg2  1)] (11)

LgA)2 = 0.217028
Lr) 2 =(rB2 2)/[1+ rgB2  g2 1)] (12)

gA =(gB+ rg(2

rgA )2 = 0.085808

We obtain ; and aB using the following formlae:

!.A2 = (1 - rgA2 )/(l - lgA2) (13)

= 0.9041

52 = (1 - rgB2)/(l - rgA2 ) (14)

= 0.95856 . a
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Our values for L and d resulting from the use of our general formulae provided

above are equal to rgA and £.gB, respectively, when SR = 1.0. Thus (MPP)A and (MPP)B

can be computed from the information provided above, using formulae 8 and 9, as follows:

(MPP)A = (0.46586)(0.9041)(+ 0.7978) + (0.60)(0.49673)

(MPP)B = (0.29293)(0.9586)(- 0.7978) + (0.40)(0.49673)

Thus (MPP)A equals 0.6341 and (MPP)B equals - 0.0253,and (MPP)t equals the average

of (MPP)A and (MPP)B, or 0.3044. The selection effect is equal to 0.248 and the

hierarchical classification effect is equal to 0.056. The allocation effect is, of course, zero.

The above example illustrates the four-variable model with an example possessing

an SR less than 1.0 and that also has rab equal to 1.0--permitting confirmation by the more

simple model described in Appendix 1A. The results are the same. We will now proceed

to two examples that require the complexity of this more general model.

Our second example with an SR of 0.7 has allocation effects but no HC effects.
For this example, rab = 0.8, and raA = rbB = 0.5, Selection is accomplished on g = a + b.

Since Sa = Sb = 0.5, we see that Sg2 = 0.9, and rag = rbg = Sg = 0.4743.

Our model requires that we have raA = rbB) and raB in order to compute 1d4, _da

(- dB). We also require rgA 2,"gA2 = rgB2, to enable the computation ofSA. Our reverse

restriction in range formulae used to obtain these values are given below:

=aA (raA + rgA rgA (Sg - 1))/** (15)
** = ((1 + rga2 (.g - 1))(I + rgA2 - 1))) 2

_aA= 0.3916

ab= (ra, + rga rgb (5g - 1))/*** (16)

*** = ((1+rga2 (5g + ))(+rgb2 (.g 1))) 2

rab = 0.6320

LgA2= (rgA 2 £g2)/(l + rgA2 (a.g2 - 1)) (17)

rgA2 = 0.12516

5.4 2 = (I -gA2)/(l - rgA2 ) (18)

Sg = 0.9412
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Our computing formulae for rdA can be simplified because raA = rbB, in accordance

with an explanation in a previous section. Our formula and result becomes:

rdA =aA ((1 -rab)/2) 1/ =0.167993

We insert these values in our basic model (formula 8) as below:

(MPP)A = [dA & MqA + rgA Mq

= (0.1680)(0.9412)(0.7978) + (0.47434)(0.49673)

= 0.1261 + 0.2356

= 0.3617
S

For this example, (MPP)A = (MPP)B = (MPP)t, and all of the classification effects

are due to pure allocation. The gain in MPP over chance selection and classification due to

allocation effects is 0.1261, and the comparable gain due to selection effects is 0.2356.

While (MPP)t is less than is present in our next example that has disparate validities, 0.4 -

and 0.6 with an average validity of 0.5, the MPP of one job is not magnified at the expense

of the others. Quality is level across the two jobs, a goal frequently pursued by military

managers.

Our third example with an SR of 0.7 has both allocation and HC effects. The rab •
remains at 0.8, but raA = 0.6 and rbB = 0.4. Selection is still accomplished on g = a + b,

but g is a different variable since a and b no longer have equal SDs--instead their SDs are

respectively 0.6 and 0.8.

Using "correlation of sums" formulae we see that Sg2 = 0.904, rag = 0.9676, rbg =

0.9255, rgA = 0.5806, rgB = 0.3702. The same general formulae as in 15 through 18

above, are used to make reverse restriction in range corrections providing the foliowing

results for the indicated relationships.

Lab = 0.6345

aA= 0.4775 ; L~bA = 0.3030

rbB = 0.31183; raB = 0.19785

Lag2 = 0.87864; Lag2 = 0.74635

SA = 0.4348; S, = 0.3008

= 0.9105; B =0.9646
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We must use the more general formula for computing Ed and (-dB), since 5 does

not equal & in the restricted space, although rbA = raA rab--just as it does in the

population. The formulae used are given below:

XdA = (aA (& -Eab b))/i (19)

r.dA = 0.116478/.33698 = 0.3456

-rd = ( (Sb -ra))/ i (20)

- rdB = - 0.007776/0.33698 = - 0.0231

= Sa2 + & 2  Lab S i = 0 33698

Inserting the appropriate values from above into our basic model (formulae 8 and 9)

provides the following results:

(MPP)A = £dA SA MqA + rgA Mp

= (0.3456)(0.9105)(0.7978) + (0.5806)(0.49673)

- 0.2510 + 0.2884

= 0.5394

(MPP)B = rdB SB MqB + rgA Mp; MqB = (-MqA) when q = 0.5

= (- 0.0231)(- 0.7978)(0.9646) + (0.3702)(0.49673)

= 0.0178 + 0.1839

=0.2017

(MPP)t = ((MPP)A + (MPP)B)/ = 0.3706

In this last example the gain in MPP over chance selection and assignment due to

classification effects (both HC and allocation) is 0.1344 and the comparable gain due to

selection effects is 0.2362. Comparing the results of the two examples, we see that the

loss of classification efficiency (measured in terms of MPP) due to elimination of HC

effects (e.g., by transforming a and b scores so as to give them equal variances in an

operational situation) results in a loss of 0.008 of MPP measured in standard scores, a

6 percent loss. This compares with a loss of 14.3 percent for a comparable situation

without selection. The results for the three examples with SR = 0.7 are summarized in

Table lB.3.1.
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Table 1B.3.1. Three Examples With SR = 0.7
(Entries are MPP Standard Scores)

Source of 0
Example Total Gain Due to Gain Due to Classification

# Gain Selection Classification Efficiency

1 0.304 0.248 0.056 HC Only

2 0.362 0.236 0.126 Allocation Only

3 0.371 0.237 0.134 HC and Allocation

Our four-variable model can be used to evaluate a variety of operational conditions

involving selection and/or optimal assignment to two jobs. Actual empirical data for two

predictors and two criteria variables can be used in conjunction with the model in its most

general form. Predictor composites need not be LSEs; service aptitude area composites can

be depicted in our model.

We chose to illustrate our model with examples that either permitted comparisons

with Brogden's model (1959), or provided a means of comparing pure HC, pure

allocation, or mixed situations--with hypothetical relationships among the variables that fall

within a range that is frequently encountered in real life. However, this model can be

readily utilized to investigate other issues, such as the effect of validity range and

magnitude of average validities on HC and mixed HC and allocation situations.

Consideration of the results for our selected examples has sharpened our intuition

with respect to the competitive relationship between HC and allocation effects. The -

competitive position of allocation with respect to HC is greatly increased as more jobs and

and corresponding test composites are added to the classification system. The reverse is

true with respect to the average intercorrelation coefficients among LSEs used as

predictors. As r approaches 1.0 the role of allocation literally vanishes, while the

competitive role of HC becomes trivial when r becomes small (a small r is a rather unlikely

finding in real life). All things considered, the elimination of HC effects from the

operational test composites used for personnel classification in the services may not have as

much adverse impact on the magnitude of MPP as we initially thought.

Simulation provides a more precise method for investigating such issues when there

are several composites and job families. One kind of simulation methodology appropriate

for this purpose is discussed in Chapter 4, and another kind is illustrated by Nord and

Schmitz in Chapter 3 of Zeidner and Johnson (1989).
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CHAPTER 2. MEASUREMENT OF CLASSIFICATION

EFFECTIVENESS

A. INTRODUCTION

The work of Brogden (1946b, 1951, 1954a, 1954b, 1955, 1959, 1964) and Horst

(1954, 1956a, 1956b, 1960a, 1960b) generated the main stream of progress in the

measurement and improvement of classification effectiveness. Brogden directly ties

measurement of classification efficiency to mean predicted performance (MPP) and thus to

utility. Horst's measure of classification efficiency has a direct and simple relationship to

Brogden's measure; the square root of Horst's index may be adjusted to make it

proportional to Brogden's when the same assumptions are made. This adjusted index thus

measures the benefit obtainable from a classification test battery for a specified set of jobs

(i.e., PCE). This is especially fortunate since Horst's index has a number of advantages:

it is simple to compute and to adjust; it is readily adapted for use in selecting tests for

inclusion in a classification battery; and it may provide more robust estimates than

Brogden's measures with departures from assumptions.

Mean predicted performance (MPP), used by Brogden as the measure of both

0 operational effectiveness and potential efficiency of selectior./classification, is the same

measure Brogden used in unidimensional selection. Brogden's histoic contribution

wherein he used correlation coefficients as least square regression weights to provide MPP

measures, led naturally to the expression of classification in the same terms. Additiona:'.,,

0 an improvement in the selection ratio was seen by Brogden to produce similar benefits for a

least squares weighted prediction estimate (LSE) computed separately for each job as

produced in unidimensiona selection (Brogden, 1959).

It is difficult to envisage the use of several different LSEs (each corresponding to a
different job) to select from a common applicant pool without also stipulating an

assignment algorithm. Multidimensional selection is maximally effective when the LSE

score corresponding to the job to which an individual has been assigned is higher than any

score for the same LSE in the rejected group. In order to make reject/accept decisions, the

scores of all applicants across all jobs must be compared. The applicant cannot simply be
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rank ordered only on his highest LSE score; quotas may impact on the assignment process

in such a way as to force consideration of an applicant's acceptance in a different job based

on his rank order with respect to that job's corresponding LSE score.

It is not difficult to envisage a multidimensional assignment process which

simltaneously maximizes selection and classification. Such a process was indicated by

Brogden (1951, 1959). Brogden developed as the source of the gains attributed to the joint

application of selection and classification procedures a model in which every applicant, if

selected, was assigned to the job corresponding to that LSE score with the highest unique

component; the applicant was not selected if, and only if, he had no unique component

score as high as the highest unique component score of an accepted applicant. Selection is

on the unique components ("u") that are necessary and sufficient for classification. In this

selection on "u" model, the MPP in the non-selected group was reduced, but not

minimized since selection was not accomplished on the total LSE score. However, in

Brogden's multidimensional selection model, the increase in the MPP standard score

resulting from assignment, as compared to random aSsignment, was maximized in the

accepted group. While assignment does not suffer a loss in efficiency from the exclusive

use of "u" in the selection-assignment process, selection clearly does.

An operational selection and assignment algorithm for implementing this model is

impractical. Since the effect of the general component is not considered in the selection

process, the model does not accomplish se!ection with a set of variables that would

ordinarily be used operationally. However, this model reflects the potential utilization

efficiency obtainable under Brogden's assumptions, including his selection ?lassification 0

process, 5 for a defined test battery and set of jobs; and very importantly, Brogden's

measure of classification efficiency is readily convertible to utility terms.

This chapter focuses on the measurement of potential classification efficiency in

terms of MPP; other measures of classification effectiveness are discussed in Zeidner and

Johnson (1989b). The related contributions of Brogden and Horst to the increase of MPP

by selecting efficient classification tests for inclusion in a test battery, by selecting more

efficient test composites, and/or by restructuring job families, will be discussed in the

following chapter. Brogden's and Horst's contributions to the improvement of

Brogden's selection-classification process is unfortunately not usually listed as an assumption; his
results listed in Table 1 (1959) depend upon his particular selection-classification process and this 0
process is a key assumption of his model.
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0

classification efficiency are described separately to highlight methodological issues related

to the increasing of potential classification efficiency (PCE).

B. BROGDEN'S CONTRIBUTION TO THE MEASUREMENT OF
POTENTIAL UTILIZATION EFFICIENCY

To explore the benefits of differential selection and allocation of applicants,

Brogden (1951) applied the approach he had previously used (1946a) to measure mean

predicted performance (MPP) in the unidimensional selection case. To this end, he

introduced the concept of a differential selection model whose implementation has been

referred to in the previous chapter as the "multidimensional screening" (MDS) algorithm.

Benefits that could be provided by multidimensional selection and classification were not

limited to, but were primarily thought of, initially, in terms of an improvement of the

selection ratio. For example, in selecting for two jobs using separate predictors correlating

less than 1.0 with each other, Brogden (1951) noted that since each predictor was a

"composite derived by multiple correlation procedures .....6 (p. 176), a higher cut score on

each predictor would yield the same number of qualified, selected applicants as a lower cut
score on a univariate selector, the higher cut scores, of course, yielding higher MPP

standard scores. Since some applicants would be rejected by both predictors, the
40 improvement in the selection ratio would be a function of this overlap. The full potential of

this increase in the MPP of selected applicants would be realizable only if an optimal

assignment process were used to allocate successful applicants. However, if, after the

rejection/acceptance decision were made using one LSE per job, employees were assigned

randomly (but only among those jobs for which they exceed the cutting score on the

corresponding LSE) the advantage of the improved selection ratio would be partially

maintained while the gain from optimal assignment would be minimized. The effects on

MPP of improving the selection ratio and from optimal asignment could be partially
0 separated in this fashion,

Table I of Brogden's 1951 article showed MPP in terms of standard scores for

selection situations involving differential assignment to two jobs and percents rejected

ranging from 10 percent to 90 percent, the correlation between the two predictors ranging
from zero to 1.0, and validities equal to 0.5. Brogden provides a footnote explaining the

MPP values corresponding to an intercorrelation of 1.0. (See Table 2.1.) He notes,

6 It should be noted that the standard deviation of each predictor is defined in the appendix of Brogden's
arucle as the multiple correlation coefficient, thus identifying the "predictor" as necessarily a LSE.
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"Assignment with two predictors correlating unity is equivalent to assignment with a single

predictor." (p. 182, Table 2). This is, of course, correct but seems inconsistent with his

1959 article, particularly tne values in his Table 1 and the procedure he recommends of

multiplying table entries by Ri'--r. We believe the apparent inconsistency is attributable to

a different selection process underlying the models used in the two articles, selection on the

LSEs as contrasted to selection on the unique components.

Table 2.1. Mean Standard Criterion Values Rpsulting from Differential
Placement Into 'Two Assignments as a Function of the Degree of

Correlation Between the two Predictors* and the
Percentage Placed In Each Assignment

Percentage Placed Correlation Between Predictors
in Each of Two
Assignments 0.0 0.2 0.4 0.6 0.8 1.0*

5% 1.03 1.02 1.01 1.00 0.96 0.88

10% 0.87 0.86 0.84 0.82 0.79 0.70

15% 0.76 0.75 0.73 0.71 0.68 0.58

20% 0.68 0.67 0.65 0.62 0.59 0.48

25% 0.61 0.60 0.57 0.54 0.51 0.40

30% 0.55 0.53 0.50 0.46 0.43 0.32

35% 0.48 0.47 0.43 0.40 0.36 0.25

40% 0.42 0.41 0.37 0.34 0.29 0.18

45% 0.36 0.34 0.30 0.26 0.22 0.10

50% 0.31 0.28 0.25 0.22 0.17 0.00

Source: Brogden (1951), p. 182.

Each of the two predictors is assumed to have a validity of 0.5.

Assignment with two predictors correlating unity is equivalent to assignment with a
single predictor.

The more general solution for the value of MPP provided by Brogden (1959) was

based on: (1) LSE intercorrelations; (2) number of jobs; (3) the value of a common validity

for all jobs; and (4) the percent rejected. Again, a model is provided for the selection and

allocation of applicants using an algorithm equivalent to the MDS, but visualized as

applying only to the unique component of the LSEs. For this solution, Brogden uses
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Tippet's (1925) tables to arrive at MPP values for zero correlated predictors assumed to

have validity coefficients equal to 1.0. Actually, Brogden's values shown in the table are

criterion standard scores which can be converted to MPP standard scores, as previously

noted, by multiplying the mean criterion scores by the validities of the LSEs. The mean

criterion scores derived from Brogden's table will be referred to here as Mpm, where the

subscript p denotes the percent of the applicant population rejected, and the subscript m

denotes the number of jobs among which selected applicants are optimally allocated.

The variables referred to as predictors by Brogdcn are defined precisely by him as

least squares weighted performance estimates (LSEs), where the separate regression

equation for each job is based on all variables in a battery of predictor measures. As

previously noted in Chapter 1, those LSEs are optimal for classification as well as for

selection.

A provision for correlated predictors in a model based on orthogonal and unique

components is made by means of an assumption that the magnitude of the intercorrelation

among LSEs is attributable to the presence of an underlying general component, "g." All

remaining reliable variance is attributable to a set of unique components. These unique

components corresponding to each job are uncorrelated with each other and with "g;" each

such factor, referred to as "u," has a common (i.e., equal among all "u" variables) validity

value with its corresponding criterion and a zero relationship with all others. Brogden

made an analogy between these particular assumptions and the concept of parallel form

tests in which each test consists of a true score and an error component that is uncorrelated

* with both the true score and the error components in other predictors. The standard

deviations of the remaining orthogonal components of the several predictor-, after g has

been removed, are shown by means of the above analogy to be /1-r , where r is the value

of all of the intercorrelations among the predictors. 7

The value of [/1-r is used as a multiplier to scale the tabled values of Mpm to

provide an MPP standard score for correlated predictors (LSEs). The value of [17 Mpm

is the MPP standard score for perfectly valid predictors (i.e., the criterion variables)- more

generally, R fi-r MP.m is the MPP standard score resulting from Brogden's selection and

classification process. This is a measure of PAE when there is no selection; otherwise it is

7 We use an alternative to this analogy later on in this chapter; our four-variable model described in
Appendix 1B confirms Brogden's results for the two-predictor case.
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an underestimate of the PUE that would result from using the LSEs in the selection as well

as the assignment process.

If each LSE score is separated into a unique score called u and a common or general

score, g, corresponding to the g and u components described above, we can say that the

predicted performance score, y, equals the weighted sum of u and g expressed as standard

scores, as if they were factor scores in a factor model. Brogden points out that only the u

component contributes to allocation efficiency, and he makes no use of the g component in

computing his table entries (Mp, m) except when rn eqi11as one, the simple '!nivariate

selection case. There is, of course, no distinction between g and u when m equals one.

Brogden's use of a multiplier equal to RI l1-r when r = 1.0 reduces the value of the MPP

standard score to zero in situations where PUE (the MPP standard score obtained after

using an optimal selection-classification process) cannot be less than R (Ml.m), if selection

is accomplished on the LSEs instead of on the u values.

The Brogden model is not representative of most operational situations when p > 0,

since g is not used in the selection process, although the value of g (e.g., general mental

ability) for this process is universally recognized. In fact, the selection effects in almost

any operational process should yield an MPP standard score as large as that provided by a
single predictor when r = 1.0, regardless of the value of m. Thus the entries in Brogden's

Table 1 (1959, p. 189) provide correct PUE values only for the row corresponding to

m = 1 (i.e., for selection to one job across all values of p), and for the column

corresponding to p = 0 (i.e., for no rejectees). (See Table 2.2.) We will refer to all other

values derived from his table and multiplied by R1II--r as estimates, rather than measures,

of PUE.

The selection process which would correspond to Brogden's tabled MMP standard

scores has an effect equivalent to our MDS algorithm, except that Brogden's model uses

only the unique components of the LSEs, rather than the total LSE scores as the selection

and assignment variables. While the same classification results would be obtained using

either the total LSE scores or the unique components of these scores, the same is not true

for the selection process. The general factor components of the LSEs can make a major

contribution to PSE, in addition to the contribution that unique scores can make. Thus

Brogden's tabled MPP values are correct for the implied selection process, but it is fairly

unlikely that this particular process, one in which the estimated PUE is zero for a

unidimensional battery used for both selection and assignment, will ever be used in an

operational situation.
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Table 2.2. The Allocation Average as a Function of Percent of the
Applicant Pool Rejected and the Number of Jobs

When R =1.00andr =0*

Number of % of N Rejected
Jobs

0 10 20 30 40 50 60 70 80 90

1 0.00 0.20 0.35 0.50 0.64 0.80 0.97 1.16 1.40 1.75

2 0.56 0.73 0.85 0.97 1.09 1.22 1.37 1.54 1.75 2.07

3 0.85 0.99 1.10 1.21 1.32 1.44 1.57 1.73 1.93 2.23
4 1.03 1.17 1.27 1.37 1.48 1.59 1.71 1.86 2.05 2.35
5 1.16 1.29 1.39 1.49 1.59 1.70 1.82 1.95 2.14 2.43

6 1.27 1.38 1.48 1.58 1.68 1.78 1.90 2.04 2.22 2.51

7 1.35 1.46 1.56 1.65 1.75 1.86 1.97 2.10 2.28 2.55

8 1.42 1.53 1.63 1.72 1.81 1.91 2.03 2.16 2.33 2.60
9 1.49 1.59 1.68 1.77 1.86 1.96 2.07 2.20 2.38 2.64

10 1.54 1.65 1.73 1.82 1.91 2.01 2.11 2.24 2.41 2.68

Source: Brogden (1959), p. 189.

* To calculate an allocation average for other specified values of R (the validity of the

,i ) and r(the intercorrelation of the 6i ), multiply by RJ1-r .

We develop and describe two modifications of Brogden's (1959) model; each

incorporates one of two alternative selection processes. Both modifications use Brogden's

tabled values as a starting point. Both models provide the same results as Brogden's when

no one is rejected, and, for the "selection on g and u" model, the same results are provided

when r equals zero. For both modifications, (selection on g and selection on u and g),

when r is equal to unity, the MPP standard score will be the same as when m equals one

(the univariate case). The latter desirable relationship does not hold for Brogden's model

(i.e., the selection on "u" model).

The first of these two modifications uses a selection process analogous to the two-

stage selection procedure in which selection is accomplished using the g component and

classification using the u component of the LSEs. This process resembles the most

commonly used selection/classification process in which the rejection/acceptance decision is

made on general mental ability and the later classification process is accomplished using
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more job specific measures. The rejection of applicants with the lowest g component

scores over the total applicant group does not affect the mean of the unique component for
those accepted and assigned to jobs, since u and g are independent of each other.

The second model uses cut scores on both g and uj to effect selection. The rejection

of 10% (p = 0.10) on each of the g and u components of LSE for each job will yield a

selection ratio of (l-p) 2 or 0.81; a separate p on both g and each of the m uj of 0.20 is

equivalent to a SR of 0.64, and a separate p on both g and each of the m uj of

0.30 is equivalent to a SR of 0.49.

A formula for using Brogden's table of Mpm values to compute MPP standard
score values corresponding to each of these modifications is derived using Brogden's

assumptions, which require the covariance matrix among the predictors (i.e., predicted

performance estimates, LSEs) to have the same value for all diagonal elements, R2 , and a

different common value for all of the off diagonal elements (R2r ). The corresponding

intercorrelation matrix has diagonal elements of unity and off diagonal elements of r. Also

each LSE score consists of a g component which is the same for all LSE scores belonging

to a given individual, and a separate u component for each LSE score that is uncorrelated

with the g component, or with the u components of the LSEs of other jobs.

It is useful for the development of formulas for MPP based on modifications of

Brogden's model (1959) and for comparison of Brogden's and Horst's measures of

classification efficiency, to express Brogden's (1959) assumptions in the form of a

particular factor extension matrix, F. This particular F matrix reproduces the covariance

matrix among the LSEs (see Appendix 2A). Expressed as a general matrix formula,
FF' = C, each row of F represents a LSE for a particular job; the columns represent

factors--one general factor and m unique factors that have only one non-zero element in

each column. In the special set of values for F that represents Brogden's assumptions,

each element (factor coefficient) of the general factor, g, has the value of RF- , while each

non-zero factor coefficient of the mn unique factors has a coefficient of RTf-' . If these

values for the elements of the particular F that expresses Brogden's assumptions are

used, the assumed values for the elements of C that fulfill Brogden's assumptions are

readily reproduced, FF' = C.

Since F is an orthogonal factor solution, g and each of the unique factors, ul, U2 ...
urn, represent variables having a mean of zero and a standard deviation of one; these m + I

column variables are mutually uncorrelated. The elements of F are factor coefficients,

sometimes called factor loadings, which are both (1) the correlations between the LSEs for
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each job and the factors, g and uj and (2) the regression weights that can be applied to the

factor scores to form m regression equations in which the LSE scores are the dependent

variables. Thus for the t*h individual assigned to the jth job, the LSE score referred to as

Y, can be expressed as yij = R.r g, + RIl u..

It is well known that the correlations of g and uj with the jth LSE are equal to the

correlations of g and u with the actual criterion scores for the Pd- job. Thus the regression

weights for predicting LSE are the same regression weights as predict the performance

criterion scores. Mean predicted performance on the jLh job, for any defined subgroup, is

the sum of the mean g score and the mean uj score for the individuals assigned to that

group. Since our assumptions are the same as Brogden's, the same number of individuals,

Np, are assigned to each job, mn(Np) individuals are assigned to all m jobs. The mean

predicted performance standard score for the jh job, when a specified percentage, p, is

rejected using the two stage selection/classification procedure (i.e., the use of g, rather than

u in the selection procedure) will be denoted as (MPP)pj. Thus the following formula

holds:

(MPP)PJ (1/N, Rfr (1) g, + (uNi) RfiT7 )(2)+ (1u) .ij

The summing over i is 4ccomplished on the Np largest of the g scores (with uj and g

summed separately). The selection of the Np largest g scores is obtained by placing these

scores in rank order and accepting the highest Np scores. Since the uj and g variables are

in standard score form, the MPP score will also be expressed in terms of a variable that has

a mean of zero and a standard deviation of one--the statistical characteristics we wish MPP

to have in the youth population. The following notation will be utilized:

M p. 1 p ( 1)  = (2) y(3) + N'1

I / INP: g ; Mp.m I/Np A u + (
.

u
i

8 There are three regions over which the summing is accomplished: (1) summing over the region

containing all those accepted for entry into the Army, a region that varies with the value of p;
(2) summing over the m jobs; (3) summing over those accepted and assigned to any one of m jobs;
under Brogden's assumptions the expected value of this sum is the same for all jobs; this region varies
with the values of both p and m. The three regions are designated by superscripts on I [e.g.. (1)l.
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Note that the use of j as a subscript can be dropped since under Brogden's

assumptions each job has exactly the same statistical characteristics; each mean criterion

standard score refers to one job, but any job.

The means of the g scores for the selected personnel under several different

selection ratios (i.e., p) have been tabled by Brogden; these tabled values have been

referred to above as Mp,1. Similarly the means of the u scores in the applicant group

corresponding to the job to which each individual would be assigned, if selected, has been

designated as MO,m, when m > 1, and are obtainable from Brogden's Table 1. Thus the

correct MPP standard score values for 2 or more jobs, as provided by the "selection on g"

model, can be computed as follows:

(MPP)pm=R Tr M +R--r Mom ;m > 1 (2.1)

Table 2.3 containing selected values of (l/R)(MPP)pm are provided below for

selected values of r, p, and m. The values provided in this table are criterion means and -

should be multiplied by R to obtain values for MPP standard scores (estimated PUE).

These values contrast to the multiplier of RI-fTf stipulated by Brogden for application to

the values from his table. (See Table 2.2.)

We find complete agreement between Brogden's values for MPP standard scores

and those computed by Equation (2.1) when p equals zero. This allocation case, where p

equals zero, is used in the following section to establish the link between Brogden's and

Horst's measures of allocation efficiency.

The values of MPP standard scores provided in Table 2.3 support the general

conclusions reached by Brogden (1959) and are based on the assumptions and insights

provided in his pathfinding article. MPP standard score values from this table can provide

personnel management with estimates of the gains in performance realizable from the use of 0

LSEs as aptitude area composites, given that the most efficient assignment processes were

utilized after initial selection on general mental ability.

PUE values are underestimates because PSE has not been maximized for the

multivariate case in either Brogden's (1959) model or in the modifications provided here. 0

In the Army case there is a compensating effect (to some unknown degree); the PUEs are

overestimates with respect to Army input because the applicant population, as contrasted

with the youth population, has a skewed distribution as if censored over the upper one third

0
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Table 2.3. Selectlon-on-"g" Model

S.R. = 0.80 S.R. = 0.70
m m

r
2 3 4 5 2 3 4 5

1.0 0.35 0.35 0.35 0.35 0.50 0.50 0.50 0.50

0.95 0.47 0.53 0.57 0.60 0.61 0.68 0.72 0.75

0.90 0.50 0.60 0.66 0.70 0.65 0.74 0.80 0.84

0.85 0.54 0.65 0.72 0.77 0.69 0.79 0.86 0.91

0.80 0.56 0 69 0.77 0.83 0.70 0.J.33 0.91 r..7

0.50 0.64 0.85 0.98 1.07 0.75 0.95 1.08 1.17

0 0.56 0.85 1.03 1.16 0.56 0.85 1.03 1.16

S.R. = .60 S.R. = .50

m n?

2 3 4 5 2 3 4 5

1.0 0.64 0.64 0.64 0.64 0.80 0.80 0.80 0.60

0.95 0.75 0.82 0.86 0.89 0.90 0.97 1.01 1.04

0.90 0.79 0.88 0.94 0.98 0.93 1.03 1.08 1.12

0.85 0.81 0.92 0.99 1.04 0.95 1.06 1.13 1.18

0.80 0.83 0.96 1.04 1.09 0.96 1.09 1.17 1.23

0.50 0.85 1.05 1.18 1.27 0.96 1.17 1.29 1.38

0 0.56 0.85 1.03 1.16 0.56 0.85 1.03 1.16

NOTE: Table values are mean criterion standard scores which become MPP
standard scores when multipled by R, the common validity coefficient of the
LSEs. One LSE corresponds to each job. The common intercorrelations
among LSEs is represented as r," and the number of jobs and the
dimensionality of the joint predictor-criterion space as "m." All tabled
values derive, after further computations, from Brogden's (1959), Table I.
Assumptions are the same except for the variable on which selection is
accomplished.
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of the "g" distribution). It is, of course, important not to confuse potential efficiency with

the operational efficiency obtainable from grossly imperfect selection and assignment

algorithms.

The Brogden model (as well as our two modifications) will underestimate the

benefits obtainable from an assignment process that capitalizes on the potential hierarchical

classification efficiency present in the system. When the validities of the LSEs vary widely

across jobs, the use of the mean validity to obtain an estimate of PAE from the corrected

table will probably yield a reasonably accurate estimate. However, this estimated PAE will

considerably underestimate the total potential classification efficiency (the combination of

the potential allocation and hierarchical classification efficiency). PCE based in part on

hierarchical layering effects is, of course, only realizable if the test cornposites are scaled so

as to have means and/or variances proportional to their values and/or validities, and an

optimal assignment process is utilized.

Both modifications of Brogden's models can provide values of MPP standard

scores for the set of SRs tabled by Brogden; the same set of SRs, 0.10 through 0.90, could

be provided for both the model for which selection is based on g and the model for which

selection is based on u + g. Additionally, using Brogden's tabled values, as input to our

equation, can provide results for from 2 to 9 LSEs (for nine different jobs). While our two 0
models can provide for factoring out R, a similar factoring out of r is not feasible with

respect to tabled values. Thus, for both Tables 2.3 and 2.4, the basic entries, MPP

standard scores must be separately identified for each value of r.

For the table corresponding to the first of our two modified models, Table 2.3, we

have abridged the values of r provided by Brogden to seven values, 0.50, 0.80, 0.85,

0.90, 0.95, and 1.0; those ranging from 0.80 to 0.95 are within the most relevant range of

values for operational batteries and situations. Similarly, we display the effects of m equal

to two through five because it is very unlikely that the joint predictor-criterion space will

have more than five real dimensions of practical magnitude. The table entries

corresponding to r = 1 can either relate to the situation where m = I or to a multi-job

situation for which the predictor-criterion space is unidimensional. An SR of greater than

0.50 will not be used as an argument in Table 2.3 because the contribution clasification

to PUE, as SR is increased beyond 0.50, becomes increasingly negligible; for higher

values of SR, the contribution of selection dominates personnel utilization effects.

The modification of Brogden's model that incorporates a selection process utilizing

separate and independent selection on both u and g creates an S& of 0.81, when the SR on
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each of the orthogonal components of the LSE is 0.90. Similarly, when an SR of 0.70 is

applied to both components, an SR of 0.49 is provided by this model. We will refer to this

model as the "selection on u and g model." The derivation of the formula for computing

the MPP standard scores resulting from this model is provided in Appendix 2B. The

equation for computing MPP standard scores resulting from selection on g and u and

assigning on LSEs (equivalent to assigning each individual to the job corresponding to his

highest uj score) is:

Estimated (MPP)pm = Fr MpI + r Mpm . (2.2)

Table 2.4 permits the comparison of selected results across the three models

discussed above in this section (Brogden's "selection on u" model, the "selection on g"

model, and the "selection on u and g" model). All results are based on the values provided

by Brogden's 1959 Table 1 (see Table 2.2). To avoid using Tippet's (1925) data on order

functions, we compare SRs of 0.81 and 0.49 for the latter of the three models with SRs of

Table 2.4. Comparison of Three Models

Selection Process Used in Model

Using-only-"u Using-only-Vg Using "u"and "g"

r" m m

r S.R. 3 4 5 3 4 5 3 4 5

0.95 0.80/0.81 0.25 0.28 0.31 0.53 0.57 0.60 0.41 0.45 0.48

0.80 0.80/0.81 0.49 0.57 0.62 0.69 0.77 0.83 0.62 0.70 0.75

0.50 0.80/0.81 0.78 0.90 0.98 0.85 0.98 1.07 0.84 0.96 1.05

0.95 0.50/0.49 0.32 0.36 0.38 0.97 1.01 1.04 0.75 0.79 0.82

0.80 0.50/0.49 0.64 0.71 0.76 1.09 1.17 1.23 0.98 1.06 1.11

0.50 0.50/0.49 1.02 1.12 1.20 1.17 1.29 1.38 1.21 1.32 1 .40

NOTE: All entries in the above table are mean criterion standard scores; to obtain MPP standard scores
multiply these entries by R, the common validity of the LSEs. Entries are derived, after further
computations (except for the using-only*L" model), from Brogden's Table 1 values (1959). All of
Brogden's assumptions are also assumed in the further computations used to compute these entries.
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0.80 and 0.50 respectively, for the other two models. Our table will compare the three

models for each combination of these SRs with three values of r (0.50, 0.80 and 0.95) and

three values of m (3, 4, and 5), providing 18 entries for each model.

In examining Table 2.3, one should keep in mind that selection using only one test

composite, assuming random assignment to jobs after selection and an equal value for R

against all jobs, will provide a mean criterion standard score (the MPP standard score

divided by R) equal to 0.35 for a SR of 0.80 and equal to 0.80 for a SR of 0.90. Any

combined selection and classification process that provides lower criterion standard scores

than those obtainable by selection alone for particular values of r, m, and SR is obviously
ineffective. Thus, we see that a simultaneous selection-classification effort would not

appear to be worthwhile using Brogden's "selection using u" model (as depicted in

Table 2.1) for an SR of 0.80 (or more), where r equals 0.90 (or more) and m equals 3 (or

less).

Our "selection using only g" modification of Brogden's model indicates higher

values of PAE as a result of the two-stage selection and classification process. For SR

equal to 0.80, a 51 percent gain over optimal selection, combined with random assignment

to jobs, results when r is equal to 0.95 and m is equal to 2. For the same SR, if r is

lowered to 0.80 and m increased to 4, a conceivable but difficult goal to achieve, the model

provides a 120 percent gain over optimal selection and random assignment; for an SR of

0.50 this gain decreases to 0.46 percent.

The "selection using u and g" model provides higher MPP scores than either of the

other two selection and classification models when r is equal to 0.5, but provides smaller
gains, or actual decrements, as r approaches either zero or unity. This model is definitely

inferior to the "selection using g" model within the more practical range for r, that is, for r

equal to or greater than 0.8.

Unfortunately, none of these three models provides for selection and assignment on
LSE, the optimal process that must be implemented if the MPP standard score is to measure

PUE accurately. While ,dssigning on u provides the same set of assignments as does use of

the LSEs as assignment variables, selection would be more efficient if accomplished on

LSEs rather than on the unique components, the general components, or the unit weighted

sum of u and g. A simulaton approach is probably required to meet all the conditions for

an ideal measure of PUE when there are more than two assignment variables corresponding

to two jobs.
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Brogden's (1959) Table 1 (our Table 2.2) and the equations that yield Table 2.3

values are valid and practical tools for policymakers and research personnel as shown by

several examples. We will use the two-stage selection/classification concept, the "selection

on g" model as the source of the MPP standard scores used in these examples.

In the first example, we stipulate an SR of 0.70 (30 percent of the youth population

is rejected). We assume a given test battery where r equals 0.95 for four composites

(LSEs) corresponding to four job families; R for the existing four LSEs used as composites

is equal to 0.70. The question posed regarding research strategy is: In the development of

a new battery, how much would predictive validity (i.e., R) have to be increased to provide

a PUE equal to that provided by decreasing r from 0.95 to 0.90? The answer obtainable

by the application of simple arithmetic to values from Table 2.3 is that R would have to be

raised from 0.70 to 0.78.

Impressive savings in recruiting costs could be obtained from raising the SR from

0.70 to 0.80 (i.e., rejecting 20 percent instead of 30 percent). To retain the same estimated

PUE provided by the battery (and four composites) for SR equal to 0.70 (R = 0.70,
r = 0.95), r would need to be lowered to 0.85 or R raised to 0.88, or to some combination

of improvement in the values of r and R (i.e., increase in R and/or decrease in r) that would

yield an MPP standard score of 0.503.

If researchers could identify an effective additional job family and an equally

effective associated test composite (i.e., m raised from 4 to 5), the augmented battery

could, for a SR of 0.80, and a smaller increase in R or decrease in r provide a value for

PUE that equals the PUE of the old battery with the more expensive SR of 0.70, and thus

obtain the desired reduction in recruiting costs without a loss in PUE. Raising m from 4 to

5 provides several advantages: (1) the original level of PAE could be retained by

decreasing r from 0.95 to 0.89 (instead of decreasing r to 0.88, required for m = 4) or

(2) increasing R from 0.70 to 0.84 (instead of the 0.88 required for m = 4). Increasing m

cannot be expected to provide the increases indicated by the "selection on g" modification

of Brogden's model unless one of Brogden's more important assumptions is met: a joint

predictor-criterion space with a dimensionality equal to or greater than m is present. In

practice it is difficult to achieve an m greater than three, and probably impossible for m

greater than six until major breakthroughs in test research occur. The gains obtainable from

using LSEs for each job instead of for job families usually accrue more from the

improvement in job clustering than in the increasing of the joint predictor-criterion space

dimensionality. Thus, there is nothing inconsistent in expressing caution concerning the
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use of m greater than 6 for the application of Brogden's model and the recommendation that
thirty or forty LSEs be substituted for the existing nine aptitude area composites used in

Army classification.

C. HORST'S CONTRIBUTION TO THE MEASUREMENT OF PAE/PCE

Horst (1954) provides a measure of classification prediction efficiency which he
calls an index of differential prediction efficiency. His measure is a psychometric index, an
indicator of differential validity, in contrast to absolute or predictive validity. However,
Horst's index can be directly linked to MPP, and thus to utility, through its relationship to
Brogden's measure of classification efficiency. 0

Horst (1954) states: "In order to develop a method for selecting that subs- of
predictors of specified size which will yield the most accurate predictions of differences

between all pairs of criterion measures we must first define mathematically an index of
differential prediction efficiency of a test battery" (p. 3). Horst then notes that LSEs can be 0
substituted for the (unobtainable) criterion measures. Horst and others were using this
relationship before Brogden published his rigorous proof of the theorem. This issue was
discussed in more detail in Chapter 1.

Describing his index in terms of the separate LSEs for each job, Horst states: "The
index of the differential prediction efficiency of the battery is taken to be a simple function
of the average of the variances for the predicted difference scores for all possible pairs of
criterion variables" (p. 3). Thus, Horst's index is equal to the average squared difference
between each pair of predicted criterion measures, assuming standard measures for both
predictors and criteria and that the predicted criteria are the "least square estimates" (LSEs).

We refer to Horst's differential index as Hd, and continue to use the same notation

for the covariances of the LSEs (i.e., the matrix of LSE covariances is C). Horst states 0
that Hd is equal to a function of the difference between the average diagonal value (or
element) and the average off diagonal (or element) of C. Horst provides a more precise

definition of Hd:

(Hd) = (tr C) - l'C1/m ; (8.3) •

where tr stands for trace and "tr C" stands for the sum of the diagonal elements of C, the

Is are column vectors with each element equal to one (summing vectors), and m is equal to
the order of C (number of jobs).

0
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In other words, Hd is equal to (m-1) times the difference of (1) the average of the

diagonal terms and (2) the average of the off diagonal terms of C. Thus, the values of C
given Brogden's assumptions yield a value for Hd of (m-1)(R)2(1-r). Using Brogden's

estimate of PAE and expressing it in terms of Hd (see Appendix 2F) the following

relationship holds:

PAE=Mom/ ) (H d) (2.4)

Since the terms to the left of Hd remain constant for all computations in which the

number of jobs are equal, it can be seen that the use of Brogden's estimate of PAE would

yield the same order of merit for any set of alternative batteries as would the use of Hd in a

situation in which Brogden's assumptions are met. Thus a direct link is established

between MPP, PAE, and Hd, and Hd becomes, given Brogden's assumptions, a measure

closely related to utility, rather than just a psychometric index.

The simple formula for Hd defined above in terms of C, (Equation 2.3) is the final

form resulting from a lengthy derivation by Horst. The formulation of Hd most useful for

use in one of his two sequential test selection procedures is more closely related to his
beginning concept, that is, to the prediction of the m(m-l) non-null difference scores

among m LSEs. We find it highly useful to explore further the even more general concept

of Hd as a function of the squared correlations of differences between "best" predictors
with the corresponding differences among criterion scores.

A factor solution of the correlation matrix among tests (with ones in the diagonals

and designated as Rt) can be completely factored so that FFI'= Rt. F, can be extended
(Dwyer, 1937) 9 to the m(m-l) non-null differences among the LSE to provide a Dwyer

factor extension solution (Fd); each column element in Fd is the correlation of a difference

variable with the factor represented in the same column in Fl. Each factor is a variable with
variance of one that is orthogonal to the other factors. The variable corresponding to each

row of both F, and Fd can be thought of as a dependent variable predicted by the vector of
regression weights found in that row and applied to the column variables (factors) that

serve as the independent variables. Thus, each row of Fd is a vector of regression weights.

The factor extension concept is defined and a solution provided in Dwyer's (1937) article; Fd is an
extension of F, into the criterion space (in this case specifically to the differences among the criterion
variables).

2-17



Ft can be similarly extended to the m criterion variables represented by the rows in

the matrix called F. This factor solution, F, is very important because: it can also directly

yield a value for Ha, it is easier to use; it is central to the test selection process; and with

selected orthogonal rotations it can supply several interesting and useful factor solutions.

The derivation and further exploration of F can be found in Appendix 2C.

It can be shown that the regression weights of the row variables in F, the predicted

criterion variables, can provide the means for computing the rows of regression weights for
predicting the m (m-i) non-null criterion difference variables. Each difference vector

(e.g., representing the difference between the ith and the jth criterion variables) can be

computed by subtracting the ith row from the jth row of F. When all m2 differences among

variables (including the m null variables) are considered in Fd, the variance of each column

of Fd is equal to the variance of that column in Fd. Since Hd is defined as the sum of the

column variances of Fd divided by 2m, Hd is also equal to the sum of the column variances

of F. (See Appendix C.)

It is convenient to define Hd in matrix notation. The use of matrix notation will

make it obvious that F under all orthogonal rotations will yield the same value for Hd.

Thus, F need not be expressed in terms of the triangular factor solution implied by Horst's

test selection procedure, but instead any orthogonal rotation of F will suffice to yield Hd.

This matrix formula is as follows:

Hd = tr (F - HF)(F - HF)' (2.5)

H is an operating matrix with all elements equal to 1/m, and the same number of rows and

columns as F.

Appendix 2C shows that Equation (2.5) in this general form is algebraically

equivalent to Horst's final formula for Hd. Thus, and noting once more that FF' = C, we

can use the following relationships: 0

Hd = tr (F - HF)(F - HF)' = tr C - ('C 1)/m (2.6)

The further relationship of FF' = C, which follows from the identification of F as a Dwyer

factor extension solution, equates this F with the F used to reproduce a covariance matrix

C; one particular class of C matrices are the covariance matrices whose corresponding

correlation matrices have values for all its elements that meet Brogden's assumptions.

There is a need for a general formulation of an index analogous to Hd that will

provide the maximum flexibility while remaining true to the basic concept of measuring the
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presence of differential validity in a set of predictors. McLaughlin et al. (1984) pointed out

the difficulties in using Hd as an index of classification effectiveness of an operational

assignment procedure in which test composites that are not LSEs have prescribed matches

with jobs and in which the test composites are used in the assignment process as surrogates

for predicted performance with respect to predesignated jobs. This operational constraint

prevents the use of LSEs as assignment variables and should be reflected in the estimation

of potential operational classification efficiency. The situation of interest is defined in terms

of the existing aptitude areas and job families. In other words, the maximum MPP

standard score obtainable using an optimal assignment process should be estimated under

the restriction that specifies aptitude area composites are (and will continue to be) used as

the assignment variables for stipulated jobs.

Horst's index, Hd, as noted earlier, can be most generally stated as the sum of the

squared correlations between the difference between each pair of criterion scores and the

best predictor of each such difference obtainable from the battery. Horst also defined Hd in

terms of the criterion scores, Y, as the sum of the m(m-1) values equal to (Yj - Yk) 2, with

j and k ranging over all values from 1 to m, and then averaged over the N individuals in the

sample. This latter definition holds only because the "best" predictor stipulated by Horst is

the difference between the two LSEs associated with the two criteria whose difference is

being predicted. Thus, each pair of LSE differences is being correlated with itself and the

above simplified formula holds.

A more general formulation of an index of differential validity can be defined; such

a general index requires the computation of each correlation coefficient between the

criterion pairs and the designated predictors of these pairs. The covariances of each

predictor pair and each criterion pair would be summed without squaring in order to

preserve the sign of each cross product in the computation of their average value (the

differential validity). Several alternative indices of differential validity analogous to Hd are

discussed in a following section.

McLaughlin, Rossmeissl, Wise, Brant, and Wang (1984) suggested that it would

be interesting to examine a modification of Brogden's assumptions (of equal

intercorrelations and equal validities, etc.), with all assumptions fully retained, except that

the validities (the Ris) be permitted to vary. The authors give a formula for H2 separated

into an alleged Brogden measure and a component of differential validity due to the

variation in predictability of the criteria; what they call the "Brogden measure" is defined as

RIT , but without using the value for Mpm, and without concern that Brogden's
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measure is undefined for this situation. The other component of their index involves m, the

number of jobs, r, the average intercorrelation of the LSEs, and the variance of the Ris

across jobs. Computing Hd from F with values prescribed by changing the assumption

regarding the permissibility of variation among the Ri provides interesting results,

although different from those given by McLaughlin et al. (p. 46).

We redefine F using Brogden's assumptions, except that the validity for the ith LSE 0

is Ri. The standard deviation of the values of Ri will be referred to as SR and the mean of

the Ri denoted as R. Using this notation the ith row of F has a first element of

R ,/7, has one element equal to R .lT_-' and all other, m-i, elements are equal to zero.

The non-zero elements to the right of the first column form an m by m diagonal matrix

section. The C matrix, as reproduced by FF', has diagonal elements of Ri 2 and off

diagonal elements equal to (rRiRj).

When the formula, Hd = tr (F-HF)(F-HF)', is used to compute Hd from an F

containing R substituted for each Ri, the result is Hd = (m-l)(R)2 (l-r). The result would

be the same, of course, from computing Hd from the values in the matrix C using equation

2.3. When the F reflecting unequal values for Ri is used to compute Hd the terms in the

expression for Hdcan readily be separated into a term equal to: (1) (m-1)(R)2 (1 - r), that

is, equal to what would be obtained for Hd if R had been substituted for Ri; (2) a

separate term derived entirely from the g factor, and (3) a third term deriving from the m

unique factors.

The first of these three terms could be considered a measure of allocation efficiency

and labelled Hub. The second term, Hg, appears to be a measure of hierarchical

classification efficiency derived from the g factor, and the third term is the hierarchical
classification efficiency derived from all m of the unique factors (Huc). Thus, Hd = Hub +

Hg + Huc. These three components of Hd are as follows: 0

H b = (M - 1) (T)2 (1 -r) (2.7a)

Hg = (m) r (SR) 2 ; (2.7b)

H, = (mn- 1) (1 - r) (StR) 2 (2.7c)

A simplification of the above, which keeps only the contributions of u and g separate,

yields the following relationships: •
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H, = Hub +H,,c; Hd Hg + H1,; (2.8a)

Hd= (m)r(SR)2 +(m- 1)(-r)(nR 2 ) ; (2.8b)

For r equal to one, a special situation in which F has only one non-null factor exists

(i.e., all the non-zero coefficients of F are in the g factor column); thus, all the contribution

to classification efficiency is due to hierarchical classification. For the case described

immediately above, Hd = Hg = (M) (SR) 2. The MPP standard score can also be readily

computed for this special case in which there is no contribution to PCE from allocation.

For SR equal to zero, all of Brogden's assumptions are met in our example, and F

is still defined as above; Hd = Hub = (m-1) (R )2 (1-r). The tables based on the "selection

using g" modification of Brogden's model provided in the previous section can be used to

obtain an estimated PAE for such an example.

Continuing to use the same notation, we consider four examples in which all of

Brogden's assumptions are met, except that the Ri are permitted to be different. These

examples are given below; values for Ri (or R ), m, and r are specified. Seven jobs,

m = 7, are stipulated in these examples. It is assumed that a noimally distributed youth

population from which 70 percent are selected for further classification is the basis for

computing the MPP standard score that would result from the selection and assignment of

eacn example. Hd is computed for the first two examples where r is set to one; a value for r

will be selected for the third and fourth examples so as to make their Hd values equal to

those computed for the first and second examples. T,. four examples are compared in

Table 2.5.

The purpose of providing values of Hd and MPP standard scores for the four

examples described above is to demonstrate the discrepancy between computed values for

MPP and Hd when the value of the index is based on hierarchical classification effects. For

the extreme values of r, r = 0 and r = 1, and a moderately large spread of Ri values, as in

the first two of our four examples, there is no basis for assurring that Hd is proportional to

PCE. We see little justification in using Hd as an estimate of PCE in situations where

hierarchical classification effects are a major contributor to PCE.

It will be noticed immediately that, although the first two examples have different

values for R, both examples have the same value tor SR, and, since r = 1, Hd = (m)(SR) 2.

Thus, Hd is the same for the first two examples and a value of r is selected for the third and

fourth examples such that all four examples will have the same value for Hd.
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Table 2.5. A Comparison of Three Examples Having Equal Hd Values But
Unequal MPP Values

Average
Average lnter-r Value for ith
Validity Among Standard layer (all layers MPP

Example of LSEs LSEs Deviation have equal N s) Hda Standard
Number () (r) of Ri  (Ri ) Score

1 0.5 1.0 0.1 0.35, 0.40, 0.45, 0.50, 0.7 0.31
0.55, 0.60, 0.65

2 0.4 1.0 0.1 0.25, 0.30, 0.35, 0.40, 0.7 0.27
0.45, 0.50, 0.55

3 0.5 0.533 0 0.5. 0.5, 0.5, 0.5, 0.7 0.46
0.5, 0.5, 0.5

4 0.4 0.271 0 0.4, 0.4, 0.4, 0.4, 0.7 0.46
0.4, 0.4, 0.4

NOTE:

a Hd is entirely due to H in examples 1 and 2, and entirely due to Hj in examples 3 and 4. If one
assumes an Hd of 0.7 , for m = 7, to mean MPP is equal to 0.46. and seeks to generalize this result to
examples I and 2, the actual MPP values for these examples would be greatly overestimated by Hd -
(assuming proportionality of Hd and MPP).

The easy computation of a value of MPP for the first two examples requires the use

of a normal distribution. This makes it most convenient to base all examples on the youth

population where the required normal distribution exists by definition. To make the

examples resemble the real world, 30 percent will be non-selected. In Table 2.510 the
value of MPP was designated as (MPP)y when MPP is computed in forms of scores that
have a zero mean in the youth population, and as (MPP)w when MPP was computed on ,
scores whose mean equals zero in the selected enlistee population. The values of (MPP)w

provided the closer relationship to Hd.

For the first two examples, the values for (MPP)w were obtained by subtracting the

mean of a randomly assigned group from the value of (MPP)y. The latter were computed

by using a normal curve table and a simple formula for computing MPP in a placement

model. The means of each successive segment of the normal curve, first for those above

10 The values for (MPP), were not included in Table 2.5; (MPP)y is shown labeled as MPP.
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the 90th percentile, then for those falling between the 80th and the 90th percentiles, etc.,

are computed. The highest mean will be multiplied by the highest Ri, the next highest

mean by the next highest Ri until the 30th percentile (the rejection point) is reached. The

sum of these seven products provides a value for (MPP)y, which can be converted to

(MPP)w as discussed above. MPP values and the Hd values are provided for each of the

four examples identified in Table 2.5.

Table 2.5 shows that as r approaches 1, and SR is moderately large, the

contribution of any hierarchical classification effect to MPP is substantially less than its

contribution to Hd. The presence of hierarchical classification effects inflates Hd while

having much less effect on MPP standard scores. As a corollary to this statement, the link

between Hd and MPP estimated from the use of Brogden's model becomes tenuous when a

substantial amount of hierarchical classification effect is present and r does not approximate

zero. The substitution of a mean Ri (when all Ri do not equal R ), in order to use the

Brogden tables directly, is made doubtful by the results shown in Tables 2.5 and 2.6. One

can be confident of the proportional relationship between Hd and a squared MPP only when

Hd = Hub.

When r is less than one, a contribution of hierarchical classification effect can also

be provided by the unique factors, not just by the general factor, as was true for examples 1

and 2. When r equals 0.8, R equals 0.5, and Sr2 equals 0.1, the contribution of Hg to Hd

is 63 percent of its total value, while Hub and Huc contribute, respectively, 34 and 13

percent. This large component of Hg in Hd, when r is high, is significant because the

results of Table 2.5 indicate that Hg does not share the close relationship of Hub to MPP.

We suspect that Huc lies between Hg and Hub with respect to their relationships to MPP.

Table 2.6 provides a shredding out of Hd into its components for several modifications of

examples 1 and 2 described above. The modification of the examples is only with respect

to the value assigned to r; the examples are left unmodified for the last two rows of

Table 2.6 (i.e., r = 1.0).

In summary, Hd has a direct link to MPP, and thus to utility measures, only when

the classification effectiveness of a battery is entirely due to its allocation effectiveness.

Operationally this condition would exist if existing aptitude area scores were used in the

assignment process, rather than giving them a variance proportional to the variance of the

LSEs (the squared multiple correlation coefficients), and differential cut scores (minimum

prerequisites) are not used.
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Table 2.6. Three Components of Hd

Average
Average Inter-r
Validity Among a

Example of LSEs LSEs Range Hg H H d
Number (R) (r) of Ri ub u H

1 0.5 0.80 0.35 to 0.65 0.56 0.30 0.12 0.98

2 0.4 0.80 0.25 to 0.55 0.56 0.19 0.12 0.87

3 0.5 0.90 0.35 to 0.65 0.63 0.15 0.06 0.84 0

4 0.4 0.90 0.25 to 0.55 0.63 0.10 0.06 0.79

5 0.5 0.95 0.35 to 0.65 0.66 0.08 0.03 0.77

6 0.4 0.95 0.25 to 0.55 0.66 0.05 0.03 0.74

7 0.5 1.0 0.35 to 0.65 0.70 0 0 0.70

8 0.4 1.0 0.25 to 0.55 0.70 0 0 0.70

NOTE:
a The sum of Hg and Huc remains almost constant for values of r between 0.8 and 0.95; the increase in

Hdover this range is primarily due to Hub, the component of Hdwe believe best reflects MPP.

The linkage of Hd with MPP appears robust enough to justify the use of Hd for test

selection purposes, but not necessarily robust enough for use as a measure of MPP

standard scores (as the first step in estimating utility). Caution should be exercised in the

use of Hd as a measure of PCE. This is especially true when used under conditions that

maximize hierarchical classification effects, when the intercorrelation of LSEs (or

composites) are high, or when comparisons are being made across sets of test composites

that imply different values for "m" (dimensionality of the joint predictor-criterion space)

across composite sets. All three of these conditions that counter-indicate the use of Hd as a

measure of PCE occurred in the Project A analysis cited above (McLaughlin et al., 1984).
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D. IMPACT OF BROGDEN'S AND HORST'S CONTRIBUTIONS ON
THE SUBSEQUENT CLASSIFICATION LITERATURE

It is unfortunate that authoritative reviews of the classification literature have

discussed Brogden's 1951 and 1959 articles in such a way as to lead their readers to

misinterpret some of his terminology. Part of the difficulty must be attributed to Brogden's

attractive tables that gave the erroneous impression of being self contained. Authors who

used Brogden's tables in journal articles or text books did not provide a definition of the

term "predictor" used in key column headings of these tables, although Brogden had

defined his "predictors" as necessarily LSEs in the text of his articles (most clearly in a

footnote in his 1951 article). In his 1959 article he discussed at length why tests or test
composites must not be substituted for LSEs.

In Brogden's 1951 and 1959 models for the measurement of classification
efficiency, he was, in effect, defining PAE within his somewhat limiting assumptions. His

tabled values of PAE in the form of MPP standard scores divided by R/I'- , as defined in
the previous section, could be obtained by entering with the selection ratio and the number

of jobs for which "predictors" with a unique component extending into the criterion space
are available. Values for r, the common intercorrelation coefficient among the "predictors,"

and for R, the common validity coefficient for each job predictor against each job criterion,
must be specified to produce a value for PAE from Brogden's table. Brogden's precise

definition of these predictors as LSEs based on the total battery is essential to the

meaningfulness of these tables.

As previously noted, the PAE indicated by Brogden's tables is difficult to achieve

in practice. This potential is within reach only when LSEs are used as the predictors; the

equivalent of a LP algorithm is used to make both rejections and assignments; the
assumption of a dimensionality in the predictor-criterion space greater or equal to one more

than the number of jobs is met; and all LSEs are equally valid against their corresponding
(target) job. If the second assumption is not met, an underestimate of PCE results.

Conversely, the next to last assumption, one that is seldom met for more than 3 or 4 jobs,
will cause the entries from Brog;en's Table 1 (1959) to overestimate PAE. The use of

correlations among test comp,-ties instead of LSEs as the argument in the multiplier /]-

will usually cause a moderate to severe overestimate of PAE.

Hunter and Schmidt (1982) state that Brogden's "classic study" used a function
with dependent variables which included the validities and intercorrelations of "estimates of
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job performance." Thus far this is correctly stated. Unfortunately, they added the
following two sentences a few lines below: "Brogden had in mind the case in which job

performance is predicted using regression equations derived on a common battery of tests.
However, the model also hoLis when a different test is used to predict performance on each
job." (p. 259.) This last sentence is clearly wrong and could lead the reader to believe

erroneously that validities and intercorrelations of Army aptitude area composites may be

substituted to obtain estimates of MPP standard scores (PAE) in using Brogden's tables.

Hunter (1986) first states, "Brogden (1959) quantified the gains that would arise
from optimal classification and showed that gain depends strongly on the size of the

correlation between the aptitude composites tailored to different jobs." (p. 356.) Hunter
correctly notes the difficulty of keeping the intercorrelations among test composites low

(and even more difficult, we add, if the composites are LSEs). Hunter then states that:
"The only way to keep these correlations in the 0.80s or low 0.90s is to restrict the number

of tests in each composite and to artificially make the composites as close to non-

overlapping as possible." (p. 356.) Conversely, Brogden was very emphatic that it was
only the intercorrelations of LSEs, not of other test composites, that have a proven
relationship to PAE. Brogden also provided definite proof that the removal of tests from
LSEs to avoid overlapping of tests, or for almost any other reason, will reduce PAE. The
only situation in which test removal can be effected without resulting in a reduction of
PAE, is when the regression weights (Betas) for the test to be removed are equal across all
jobs. If this latter condition holds, the reconstitution of the test composite by removing one

or more tests is, of course, called for, and their removail can scarcely be called artificial.

Cascio (1987b) also provides one of Brogden's tables as an illustration of the
potential effects of classification. He presents a table titled "Mean Standard Criterion Score

of Persons Placed on Two Jobs By Placement Or Classification Strategies," adapted from
Brogden (1951),. The column headings representing intercorrelations of two LSEs are 41

labeled, after Brogden, as "Two Predictors Whose Intercorrelation Is." Presenting this

table without an explicit explanation that predictors cannot be just any test or test

composite, but must be LSEs, has a high potential for misleading the reader.

Cascio cited Anastasi (1982) for the rule that, "... a classification battery requires a

separate regression equation for each criterion." (p. 338.) Unfortunately, he adds, "The

particular combination of predictors employed out of the total battery, as well as the specific

weight given each predictor, varies with each criterion" (p. 338). In his discussion of

Brogden's 1951 model, Cascio writes of the possible use of "separate predictors (or
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regression equations) for each job." (p. 338.) A reader may erroneously interpret his

words to mean that an option is permissible: either to use data pertaining to predictors or

regression equations in entering Brogden's table. Rather, the reader should be led to

understand the necessity for the LSEs to be based on the full battery. Particular

combinat;ons of tests selected out of the total battery are not permissible for the

computation of intercorrelations among predictors (LSEs) when these intercorrelations are

to be used as the "r" in Brogden's model.

Cascio's description of "the multiple regression model based on differential

performance" (p. 340) is correct for the two-job case but does not generalize to the

assignment of individuals to three or more jobs. Cascio does not state that the usefulness

of equations predicting difference scores would generalize to a situation with more than two

jobs, but he does not inform the reader that it would not. The use of a regression equation

that predicts the difference between the LSEs for each of two criterion variables can be used

to determine an individual's "relative fitness for job A over job B," but the operational

usefulness of three such equations when there are three jobs, or six such equations when

there are four jobs, is almost nil.11

A more general approach to the assigning of individuals to jobs, one that works

well with two or more jobs, is provided by using the LSEs that predict each criterion as the

basis for making assignments. In the two-job case the predicted performance scores for

each job (LSEs) are computed for each individual and an appropriate constant added to the

job with the larger quota. Each individual can then be assigned to the job corresponding to
his highest score. Exactly the same assignment decisions would result as those made by

using the regression equation predicting the difference between the two criterion scores.

However, this simple approach generalizes to the assignment to three or more jobs. In the

general case, an appropriate constant is added to each predicted performance score to reflect

the desired quotas when the individual is assigned to his highest adjusted score. Since this

is the multidimensional screening (MDS) procedure, a provision for rejecting either a

prescribed number of applicants, or all applicants with less than the required predicted

performance score, can be conveniently utilized.

Cronbach and Gleser (1965) distinguish between "general" and "differential"

predictors, implying Brogden's (1951) predictors were something quite different from the

1 We are here distinguishing between the usefulness of predictor-criterion differences in the operational
assignment problem as contrasted with the test selection process.
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LSEs that maximize the prediction of each criterion variable using full regression equations

that include every test in the battery. Brogden did not specify the number or nature of the •

tests in the battery, only the number of jobs to be predicted with separate LSEs. Cronbach

and Gleser doubted that differential predictors of the type they believed are essential to

Brogden's model would be as valid as a general predictor. They write: "Brogden's

example, one should note, assumes that differential predictors have the same level of

validity as the general predictor, which is not true for differential batteries so far developed"

(p. 112). Quite the contrary, the average validity of a test composite that is valid across a

number of jobs (a general predictor) could not exceed (or equal, unless the predictor

criterion space was unidimensional) the average of the validities of the separate LSEs for b

each job. It does not appear that those LSEs that have the maximum validity obtainable

from the battery for each job are the differential predictors referred to by Cronbach and

Gleser. Brogden, however, (1951, 1959) had no other predictors.

Even when each job is considered separately in the selection procedure, the LSE

predictors appropriate for use in the univariate (one job) case are the same as the predictors

used for that same job in the multivariate (two or more jobs) case. The predictors in

Brogden's model are always the LSEs based on the total battcry and are the same for a
given job, regardless of the number of jobs being considered in the classification and/or

assignment process.

Horst's classification efficiency index, Hd, is generally neglected in the literature on

utility analysis. Cronbach and Gleser (1965) and McLaughlin et al. (1984) are two notable

exceptions. The latter creatively used an extension of the Horst index to compare the

classification efficiency of several alternative sets of test composites drawn from the

ASVAB. This suggested modification is discussed later in this section. Cronbach and

Gleser provided what is probably the best known review of the Horst index. We now

consider the accuracy of this review.

Cronbach and Gleser (1965) writing about Horst's differential index state that:
"certainly his procedure does not provide the ideal battery for fixed-treatment

classification." (p. 118) They add that "The function used to define efficiency does not

correspond clearly to any common type of decision problem, and it is demonstrably not the

correct function for the fixed treatment example to which Horst applies the method"

(p. 119). Neither Brogden nor Horst related their measures of classification efficiency to

each other, exercising caution about a method which did not purport to provide results in

terms directly relatable to utility was appropriate. However, since we now know, as
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demonstrated earlier in this chapter, that Hd is directly proportional to the square of PAE

when Brogden's assumptions are met and the number of jobs is held constant, it can be

said that Hd has much more merit as a surrogate for utility in a test selection procedure than

was perceived by Cronbach and Gleser nearly twenty years earlier.

Cronbach and Gleser (1965) also make the objection to the usefulness of Hd:
"The Horst solution, moreover, makes no adequate provision for a reject group who

receive no courses, job assignments, etc. Thus his analysis would apply only when all

individuals tested are to be utilized." (p. 118) However, we claim that in the selection of

tests for a battery, it is essential to consider classification efficiency whenever both
selection and classification is accomplished, in either two separate stages or in a single

simultaneous stage. When selection is part of a personnel utilization procedure that also

includes assignment to two or more jobs, the use of Hd (or some more or equally effective

PCE index) is necessary but not sufficient.

In a two stage selection/classification multi-job model, the selection of tests to be
used in the selection stage could appropriately be accomplished using Horst's absolute

validity index, Ha, which optimixes selection efficiency, and a separate classification

battery identified using Hd (Horst's differential index). There would be no need to make a
0 selection decision in the classification stage nor a classification decision in the selection

stage of such a model.

When, either: (1) further selection is to be accomplished in the classification stage
(i.e., use of minimum entry requirements for particular courses or programs), or

(2) selection and classification is to be accomplished simultaneously, as in the MDS

process, provision for the efficient identification of rejects is essential. It also is essential

that classification efficiency not be reduced in the quest for PSE. Fortunately, classification

efficiency need not be reduced to achieve greater selection efficiency. This is demonstrated

in the notional example described below.

In the example, we use the MDS procedure and a battery in which tests were

selected to maximize Hd. This procedure, also discussed in Chapter 7, assures that no

0 rejected individual can have: a higher predicted performance score for a given job than any

individual retained and assigned to that job using an optimal assignment algorithm. This

cannot generally be assured in two stage selection/classification procedures.

In this example, an LP program used with tentative quotas proportional to the actual

I job quotas is used to make a trial optimal assignment of every applicant to a job. The
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tentative quotas are inflated proportionately to allow for rejects. Assignments are made by

adding a job (column) constant to the predicted performance scores (LSEs) of each

individual to obtain an adjusted score; each person is then tentatively assigned to his highest

adjusted score. With the proper selection of job constants, quotas will be met and the MPP

standard score maximized. Next, each person is rank ordered on his adjusted predicted

performance score (the score corresponding to the job to which he is tentatively assigned),
and a count from the top scorer down made to retain a sufficient number of individuals to

meet the actual quotas. The point at which the quotas are met is the cutting score below

which individuals are to be rejected. Thus no individual in the rejected group could be used

to replace an accepted and assigned individual without lowering the MPP standard score.
The test composites best for selection are also best for classification, since the LSE is best

for both purposes. Thus, no further increase in selection efficiency can be accomplished

using any other composite from this battery, one designed to maximize Hd, and, hopefully,

PCE.

The addition of one or more tests selected to maximize Ha can provide for

increasing selection efficiency. If, for this augmented battery, the test composites best for

both procedures (i.e., separate LSEs based on the full battery for each job) are used in the
MDS procedure, no loss in classification efficiency will result while the PUE will increase

(as a result of greater selection efficiency).

We will hypothesize the addition of a measure of general mental ability to a battery

that was selected to maximize Hd. We will further assume that the addition of this test will

appreciably increase the Ha of this augmented battery while adding nothing to the battery's 0

Hd. This would be true if general mental ability was equally valid for all jobs and was not

already measured by some combination of the tests initially selected for inclusion in the
hypothetical battery.

0
Under the above assumptions a recomputation of the LSEs for each job and a fresh

application of the MDS procedure would leave every one tentatively assigned as before but
rank ordered differently on the adjusted LSEs, thus providing a different set of reiectee .

Even the rejectees would have the same tentative assignments as before, but some

individuals rejected through use of the initial, less valid, LSEs would now be identified as

appropriate for acceptance. In this example it would appear that both the Hd and the Ha

indexes were effective for the purposes intended by Horst. His Ha and Hd indexes were

surely intended to be supplementary approaches, and Hd should not be expected to S

accomplish the role of Ha, or vice versa.
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The McLaughlin et al. (1984) study is the only formal technical report issued during

the first six years of "Project A." In this study, the investigators used a Horst type measure

of differential validity as an estimate of the potential classification efficiency obtainable

from specified sets of aptitude areas. We first describe very briefly their classification

methodology and results and then provide a critical evaluation of their modification of the

Horst index as a means of comparing alternative sets of Army Aptitude Areas (AAs) in

terms of potential classification efficiency. We do not discuss their overall study results.

The alternative AA sets compared in this study include a set of one composite (i.e.,

as if a current version of the AGCT were to be used in place of its successor, the ACB),

sets of 2, 3, and 4 AAs, the then current set of 9 operational AAs, and finally a proposed

revision of this set of 9 operational AAs. Despite our reservations concerning the means of

evaluating potential classification efficiency, the results of this report are not only the best

available but also have significant and fascinating implications.

The Project A study described in this report provided for the collection of both

operational and experimental data on over 60,000 soldiers and 98 jobs (MOS). Only the

existing ASVAB tests were considered in research to determine the advisability of

reconstituting the operational AAs and restructuring Army job families.

McLaughlin et al. (1984) used an average of the Horst differential efficiency index

(Hd), designated by them as H2, and a creative extension of the concept of H2 , designated

as M2 , to measure the potential classification efficiency of the alternative AAs. The ratio of

(MIH) was proposed by the authors as an estimate of the percentage of total differential

validity that could result from the optimal use of aptitude areas as compared to the optimal

utilization of the ASVAB (i.e., the use of 98 LSEs) to assign soldiers to the 98 jobs using

an assignment algorithm that maximizes the LSEs of assigned personnel. They refer to this

percentage as "relative efficiency," and say that it assesses "the extent to which the

composites capture the differential validity possessed by the ASVAB." (p. 49.)

The computational procedures devised by the authors included several desirable

,cf,,cmnts in algorithms used for H2 and M 2. For example, alternatives were provided

for both algorithms in which the number of soldiers assigned to each job are taken into

account. Also, the LSEs for performance on each of the 98 Army jobs are obtained using

the ridge equation method to reduce shrinkage of validity of these best weighted equations

in future samples (Draper and VanNostrand, 1979). Appropriately in the computation of

M2 , the same estimates of performance differences are used across the different batteries

(i.e., the different sets of AAs). These added computational features make the comparison
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of A 2 values more meaningful across sets of AAs than if an approach similar to that used in

Horst's (1954) examples had been utilized.

As described in the previous section, Hd is the sum of the squared correlation

coefficients between two differences associated with each pair of jobs. One of these

differences (the criterion difference) is between either the actual performance measures or

the predicted performance measures (both yield the same result), and the other is the

predictor difference, the designated predictor of the criterion difference. Horst prescribed

using LSEs as the predictors in his formulation of Hd. The Project A authors define the
"predictors" as LSEs based on the two AAs corresponding to each criterion pair. The only

justification provided for the use of these particular predictors is that: "Each MOS is

associated with a single composite, so the comparison of expected performance between

two MOS is associated with a pair of composites..." (p. 47). The method has some

intuitive attractiveness as being analogous to the use of LSEs based on the total battery as

predictors when computing Hd. But it is clear that neither the LSEs prescribed by Horst

nor the one defined by McLaughlin et al. define the potential for classification efficiency

obtainable from an operational assignment procedure that uses AAs as surrogates for

predicted performance in a predetermined job family.

The authors reported the "relative efficiency" of the composite set comprised of

98 LSEs (i.e., one per job in lieu of AAs, and measured in terms of H2 ), as 100 percent

(by definition). The current 9 AAs has a "relative efficiency" of 64 percent and a single,

AGCT type, composite has a relative efficiency of 43 percent, where the more traditional

formulae for H 2 and M 2, are used (i.e., job samples are not weighted by their size).

Additional results are provided in Table 2.7.

The revised set of 9 AAs as recommended in the McLaughlin et al. report, show an

18 percent reduction in the gain of M2 provided by the 9 operational AAs over the single

AGCT type composite (again using the unweighted formula). It is noteworthy that the

a ithors considered such a reduction in differential validity an acceptable price to pay for an

increase in predictive validity.
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Table 2.7. Differential Validity Indices for Alternative Sets
of Test Composites

Differential Index ( H or M )a

Traditional Index Index Modified
(unweignted by to Reflect

Composite Sets Job Density) Job Density

98 LSEs 0.314 0.214

Current 9 Aptitude Areas 0.202 0.146

Revised 9 Aptitude Areas 0.190 0.142

4 Composite Set 0.160 0.125

3 Composite Set 0.154 0.120

2 Composite Set 0.150 0.125

1 Composite Set 0.136 0.106

Source: Adapted from McLaughlin et al. (1984), pp. 50-51.

NOTE:
a H is used for the LSEs and M for all other composites; H is the square root of the

mean value of Horst's index of differential validity, thus H2 . (Hd)/m; M lacks a
precise relationship to H (see text for description of M), but McLaughlin et al.
appear to believe that H and M are comparable.

The unmodified Horst method for computing Hd for each of the sets of AAs calls

for considering each composite (AA) as a test in a battery of tests, and each set of AAs as

equivalent to a battery; the existence of the ASVAB as the source of the test composites ir,

each AA set is immaterial to the computation of Hd. Thus a set of n AAs is

psychometrically equivalent to a battery of n tests and Hd could be computed for each such

battery in the same manner in which the investigators computed an average Hd (i.e., H2 )

for the battery defined as the set of ASVAB tests. In the discussion that follows we refer to

a hypothetical Hd computed for batteries made up of from one to nine AAs as well as the Hd

based on the ASVAB.

As noted above, the criterion differences against which the predictor differences are

correlated would differ across batteries, making a comparison of values of Hd less

meaningful than when the McLaughlin et al. approach (using the same criterion difference
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score across all batteries) is used. 12 Also, the Hd for each battery would use LSEs, based

on the full set of variables in the battery, as the predictors whose differences are correlated

with the criterion differences. Since the Army utilizes specified AAs as the assignment

variables, rather than these LSEs, an algorithm which uses less valid predictors than the

LSEs seems intuitively desirable.

We see no justification for the use of the differences among the two-variable LSEs

as the "predictor" differences in the authors' algorithm for M 2 . We believe the actual

assignment variables should be used to compute any index purporting to be an estimate of

classification efficiency--the efficiency that could be obtained from the use of specific sets

of either LSEs or specified test composites, whichever is to be used in the assignment

process.

We propose the use of two alternative procedures for computing a modification of

the M2 index. The first we will call M* 1 and the second M*2. Since the McLaughlin et al.

study assumes that the assignment variables are not in Army standard score form, as are the

existing AAs, but instead have standard deviations proportional to their validities, we will,

for our first recommended modification, propose the use of predictor variables in this same

form. The second alternative modification of M 2 assumes that all AAs are in Army

standard score form (i.e., all have the same standard deviations across all jobs with no

capability either to capitalize on validity differences or to disrupt quality distribution plans).

For both M* 1 and M*2 we will sum differential cross products considering the signs of all

scores. This is in contrast to M 2 which is not sensitive to signs since the m(m-l)

difference scores for the ith individual are squared before being further used in the

algorith,-.

In our first alternative modification of M 2 , we would substitute AA scores, in

standard score form, multiplied by their validity coefficients (weights) for the two-variable

LSEs used in the McLaughlin et al. algorithm for M 2. In our algorithm modification the

weighted AA scores corresponding to the kth job would be subtracted from the weighted

AA scores corresponding to the jN job (and not vice versa). These predictor differences

would be correlated with the criterion score for the kth job subtracted from the criterion

score for the jth job. This means that the correlation of a predictor pair with a criterion pair

12 lid is actually a covariance across the differences between pairs of predictor variable: and the
corresponding differences between pairs of criterion variables: this concept is described in more detail
later in the text of this chapter, and again in Appendix 2.
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could be negative when the difference between validities for the jth and kth jobs, with

respect to their corresponding AAs, yields an opposite sign than the differences between

the LSEs based on the entire ASVAB. This is an appropriate result and contrasts with the

effect of the McLaughlin et al. algorithm that, in effect, fits error by forcing all signs for the

predictor differences to agree with the signs of the criterion differences. The modified

algorithms for both M*1 and M*2 will be more precisely defined and discussed in

Appendix 2E; our index, one which has the flexibility of incorporating the features of either

M* 1 or M*2, is identified in the appendix as Hp.

For m jobs, each of the N individuals has rn2 pairings of predictor difference scores

with criterion difference scores. Thus there are N(m) 2 pairs of difference scores

contributing to the final value of the differential validity coefficient, Hd, H, or M. Each of

the pair of scores for producing the predictor differences are potentially different for each

individual. Thus there are m(m-l) distinct pairs for each individual, even though the

number of separate AA scores for each individual is limited to a number running from I to

9, depending on the AA set being evaluated. Similarly the ith individual has m(m-l)

potentially separate differences between his criterion scores. With 98 jobs and over 60,000

soldiers in the data set, it is unlikely that recomputation of AM2 wiN be made.

When the number of AAs in the set equals one (the AGCT situation), our proposed

modification of the 2 algorithm, if applied to the same data, would yield the same results

as would the algorithm of McLaughlin et al. For the set with two AAs (the two test

battery), McLaughlin et al.'s algorithm for Mt2 uses the same predictor differences as would

be used for predictor differences in the direct computation of Hd on that two test battery.

However, the M 2 and Hd algorithms use different values for the criterion differences; the

Hd algorithm uses the criterion variables computed from the two test battery while the M42

algorithm uses the criterion variables from the ASVAB test battery. Thus as noted above,

the expected values of the differential validity indices, for each set containing two to nine

AAs, would be highest for the Hd computed on the ASVAB battery, next highest for the Hd

computed on the particular battery, next highest for M 2 , and lowest for our proposed

modifications of M 2 . As we consider sets with a progressively larger number of AAs,

going from three to nine, these four indices have a larger spread, but retain the same rank

order.

Our second modification of the P2 algorithm is intended to reflect the classification

efficiency obtainable from each set of AAs that have been converted to Army standard score

form, and remain unweighted by job validity or value weights, when used in an LP
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algorithm to assign individuals to jobs. Thus M*2 is like M*1 except that the weights

equal to the validity coefficients used in the computation of predictor differences for M* I

are set to one for M*2. Using this modification of the M2 algorithm, the value for M*2 0

would always be zero for the single composite set and would probably be at least

50 percent smaller for the sets containing from two to nine composites. This modification

of the M2 algorithm estimates PAE. Stated differently, M*2 estimates that part of PCE that

is due to allocation effects (i.e., PCE with no hierarchical classification effects). 0

In summary, our first modification of the M 2 algorithm would provide a more

justifiable estimate of PCE (when composites weighted by job validity are to be used in the

assignment process) than does the McLaughlin et al. algorithm for A 2 . Both algorithms

yield the same values for the single composite set. Since the numerator for the "relative

efficiency" index remains appropriate for use with either algorithm, our first modification

of M 2 still yields an efficiency of 43 percent when a single composite is used to make

assignments. However, using our modified algorithm considerably lowers the relative

efficiency of all sets containing from two to nine composites. The existing and proposed

nine AA sets are not nearly as efficient, for classification purposes, as the results provided

by McLaughlin et al. indicate.

Our second modification of the M2 algorithm provides a reasonable estimate of the

allocation efficiency present in a set of AAs when prescribed AAs are to be used, in

unweighted standard score form, as the only estimates of performance on specified jobs,

and used in LP algorithms to assign men to jobs so as to maximize the MPP standard

score. Such a measure of allocation efficiency lies somewhere between OAE and PAE, not

being a measure of the battery's potential but measuring a capacity for operational

effectiveness not realized operationally unless an optimal assignment algorithm is used. We

know that Hd is proportional to the square of PAE under certain assumptions that includes

the absence of a hierarchical classification effect. The existence of a similar linear

relationship between PAE and our second modification of M 2 seems reasonable. A close

linear relationship between PCE and our first modification of M2 seems less likely. Any

useful relationship between PCE and Ml2 seems even less likely.

E. RULE-OF-THUMB MEASURES OF CLASSIFICATION EFFICIENCY

The most accurate measures of either potential or operational classification

efficiency (PCE or OCE) of batteries or sets of test composites are complex to visualize and

expensive to realize. Less expensive rule-of-thumb measures that approximated either PCE
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or OCE would be highly desirable. We describe several candidate heuristics for

consideration. The determination of MPP standard scores by simulation or numerical

solutions of integrals are expensive procedures that less expensive rule of thumb heuristics

seek to approximate. Versions of M2 discussed above are neither sufficiently accurate nor

sufficiently inexpensive to be considered as a practical substitute for a simulation approach.

We consider ten rule-of-thumb measures that have been used in previous research

to estimate PCE; about half of these rules are at best ineffective, sometimes doing more

harm than good. These rules, R#l to R#10, are summarized in Table 2.8.

Table 2.8. Figures of Merit Sometimes Used as Measures of
Classification Efficiency

Rule More Appropriate For:

Number Figure of Merit a OCE PCE Accuracy Rating

1 Composite (or test) -1 Low
intercorrelations

2 Predicated performance V Medium
intercorrelations

3 R - r High; still needs multiplier
reflecting rule #10

4 Predicted validity for for Low
composites LSEs

5 Ild Medium to High; use with
rules #4 and #10

6 Comparison of diagonals of Va Very Low
with other row elements

7 Comparison of diagonals of Va Medium to High for OCE;
with other column elements use with rule #10

8 Column variance of V Medium; a rough estimate
of Hd

9 Dimensionality of either predictor Low, except at upper bound
or criterion space for rule #10

1 0 Dimensionality of joint predictor- Probably Medium to High if
criterion space individual factor contributions

are considered (but imperfectly
understood)

a See text for description of notation.
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In defining these "rules" we refer to the matrix of intercorrelations of tests as "Rt"

and the intercorrelations of composites (or AAs) as "Ra." The matrix of test validities will

be called "V" and the composite validities called "Va." These matrices have rows 0

corresponding to jobs and columns corresponding to predictors. The diagonal elements of

Va provide the validities of each composite for its corresponding job (or job family).

Rule #1 implies that a set of composites with lower intercorrelations always will

provide a higher OCE than will an alternative set of composites having higher

intercorrelations. The index corresponding to this rule is the average of the off diagonal

elements of Ra or Rt. Since this estimate ignores the configurations of validity vectors and
predictive validities across jobs, a set of composites refined by recourse to this rule, may, 6

particularly with respect to Ra have its PCE reduced.

Rule #2 uses "r" as a measure of classification efficiency and implies the desirability

of minimizing r. While this is usually good advice and is more useful than rule #1 for

evaluating alternative test batteries in terms of PCE, this rule is not relevant to the

estimation of the OCE of alternative sets of composites. The value of r, as the average
intercorrelation of the predicted performance measures, reflects the configuration of
validities as well as the intercorrelations of the tests and is thus a useful estimate of the PCE

of a battery, especially if selection is not also to be accomplished with the battery. S

Rule #3, a very useful rule-of-thumb, assumes that a figure of merit equal to

RIT -ris closely proportional to the PCE of a test battery. This function was discussed

earlier in this chapter. R is the average multiple correlation coefficient between all the tests
in the battery and each job, and r is the average intercorrelation among predicted

performance measures (LSEs). The formulae for R and r are based entirely on Rt and V.

Specifically, r is equal to (l/m)1'SV(Ra- 1)V'S1 where S2 is a diagonal matrix whose
non-zero elements are the diagonals of V(Ra- 1 )V'; R is equal to the trace of S divided by

the number of jobs (m). Ra and Va can be used in computing this figure of merit only if

substituted into the above formulae for Rt and V, respectively; this rule-of-thumb measure

is not useful in determining the OCE of existing or proposed AAs, since the value of this

measure is based on the assumption that LSEs will be used as assignment variables.

Rule #4 uses several different representations of predictive validity as heuristics,

including: (1) the average multiple correlation coefficient, R ; (2) the sum of squared

multiple correlation coefficients, Ha; and (3) the average validity of AAs. Validities are

computed either between LSEs or test composites and their corresponding job criteria, and f
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then averaged across all jobs. This rule is based on the assumption that PCE is higher

whenever predictive validity is higher, a very erroneous assumption. It is obvious that K

supplements R#2 and Ha supplements R#5. The average of the diagonals of Va would be

similarly supplemented by our modifications of M2 (i.e., M* 1 or M*2 described in the

previous section).

Rule #5 uses Hd as a figure of merit to rank order alternative batteries in terms of

PCE. As McLaughlin et al. (1984) correctly realized, Hd is not very useful by itself in the

evaluation of alternative test composites that have a predetermined one-on-one match to

jobs in the assignment process. An appropriate measure that estimates the OCE of sets of

AAs, just as Hd estimates the PCE of batteries (when LSEs are used as the composites), is

much needed We could suggest that our M*I or M*2 may be vsed for this purpose, but

they, like M2, are too time consuming to compute as a substitute for a more valid approach.

The best appraisal obtainable for the OCE of alternative composite sets appears to be the

simulation methods of the type we will discuss in Chapter 4.

Rule #6 requires two steps: the subtraction of each row mean of Va from the

diagonal element in that row, and the computation of the variance within each row. It is

desirable for the first value, the differences, to be positive and as large as possible. The

row variance also should be as large as possible. Dependence on this rule, however, can

result in the reduction of OCE in the AAs. This rule-of-thumb should not be used to

estimate either OCE or PCE; it is likely that most users of this rule have it confused with

rule #7, a much more useful rule.

Rule #7 substitutes columns for rows in R#6. The AA contributing the most to

OCE may well be the one with the largest positive value when the column mean of Va is

subtracted from the diagonal element. The variance of the column adds little additional

information regarding the OCE. However, column variance is most important in the

evaluation of V in order to identify the test that may contribute the most PCE.

Rule #8 considers the column variance of V to be approximately proportional to

PCE. It should be noted that R#7 and R#8 are fairly good approximations of the

contribution that a single predictor makes to either OCE or PCE. When the contribution of

two or more predictors to either OCE or PCE is to be estimated, the intercorrelations among

predictors become important and thus an additional rule-of-thumb indicator should be used.

Rule #9 pertains to the separate dimensionalities of the sets of predictors and the

criteria. The figure of merit for this rule-of-thumb evaluation is the number of orthogonal
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factors of a useful size that results from the factoring of either or both intercorrelation

matrices. The practical figure of merit for R#9 is the dimensionality of Rt or R a since
knowledge of intercorrelations among job criteria is unlikely to exist, and the
intercorrelations among components for the same job are not relevant. McLaughlin et al.

(1984) reported that the number of common factors provided by an ASVAB correlation
matrix was only four, of which only two had roots greater than one. These results were
presented as a basis of their poor expectations for classification efficiency of aptitude areas

drawn from this battery. The value of R#9 is that it establishes the upper bound of the

figure of merit provided by the last rule, R#10.

Rule #10 relates to the number and magnitude of dimensions in the joint predictor-
criterion space, the space spanned by the predicted performance measures. A factor
solution of the matrix of covariances among these measures (one measure per job or job
family) provides an estimate of the dimensionality of this space. The matrix to be factored
has squared multiple correlation coefficients in the diagonals, as contrasted to the ones in 0
the diagonals of RI and Ra. The matrix representing the joint predictor-criterion space can
be computed as either V(Rt- 1 )V' or as the reproduced matrix, FF', where F is the Dwyer
factor extension solution (the extension of the complete factorization of Rt or Ra into the
criterion space). The figure of merit for R#10 is defined rather vaguely as the number of
dimensions in this space, usually as the number of orthogonal factors with roots over a
specified size obtainable from a factorization of FF'. Unique factors are accepted as

adding to the dimensionality of the predictor-criterion space provided they have one validity
coefficient of practical magnitude.

Brogden's (1959) model assumes that the dimensionality of the predictor-criterion

space is one greater than the number of jobs. Since this assumption may never be met in
practice for a set of more than a half dozen jobs, the robustness of the Brogden model with
respect to this assumption should be determined by a simulation experiment. -

The use of the above ten figures of merit as rule-of-thumb estimates of either PCE
or OCE is particularly helpful in interpreting data provided by others. For example, Hunter
(1986) uses R#6 to conclude that the OCE obtainable from the use of operational
composites from the ASVAB is nil. We would not dispute a conclusion based on the use

of R#7 that the indicated PCE is too low to justify the continued use of the existing AAs
when used in unweighted standard score form to make or recommend assignments, even

though we are unwilling to accept Hunter's conclusions based on the use of R#6 or his
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statement that the small deviation from undimensionality found in the Va type matrix

provided by Hunter is the result of sampling error.

We believe research decisions should not rely on rule-of-thumb measures but

should instead use the model sampling approach described in Chapter 4 or the simulation

approach employed in Zeidner and Johnson (1989b). Results from use of either M* 1 or

M*2 for McLaughlin et al.'s (1984) data would provide very interesting estimates of the

OCE obtainable from the alternative AA sets they evaluated using M2 . Further research,

based upon either model sampling methodology or a simulation approach, using a large

available data base, would be required to relate such a psychometric index to OCE w terms
of MPP. The great value of simulation methods is that results can be directly expressed as

an MPP standard score.

F. THE INVESTIGATION OF CLASSIFICATION POLICY ISSUES BY
THE SIMULATION OF ASSIGNMENT PROCEDURES

In 1968 an Army research team was assigned the responsibility of

developing the capability of evaluating alternative -1InTe! policies through the

simulation of personnel operations. Two d;f&.rent approaches were incorporated in
"Simulation Models for Personnel Operations" (SIMPO) (Olson, Sorenson, Haynam, Witt,
and Abbe, 1969).13 The better known as-- - 3c used network flow models to track

personnel through various types of assignments, training requirements, and promotions.
We are more interested in the lesser known SIMPO entity models employed to evaluate

selection and classification policies and procedures (Johnson and Sorenson, 1974).

SIMPO was an OR effort and most of its published reports were methodological in
nature; the substantive results of the OR studies of personnel policies were usually not

published. Fortunately a few of the methodology reports of SIMPO provided examples

0 that bear on the relationship of data characteristics and classification processcs to potential

classification efficiency (PCE). A matured model sampling capability, much like the one

described in Chapter 4, was described by Niehl and Sorenson (1968) as a "SIMPO I Entity

Model for Determining the Quantitative Impact of Personnel Policies." A model was

0 described that generates synthetic scores for hypothetical individuals (i.e., entities). The

model used the entity scores as input into a simulated personnel system process reflecting

13 SIMPO was a requirement in the Army Master Study program which was implemented as a BESRL (a
predecessor of ARI) Work Unit, "Computerized Models for the Simulation of Policies and Operations
of the Personnel Subsystem--SIMPO-1."
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prescribed personnel policies and procedures. Most importantly, the model output at

desired points in the simulated sequence of personnel actions was expressed as MPP

standard scores. This model provided a valid and inexpensive capability for measuring the

OCE or PCE resulting from alternative selection and/or classification policies.

Sorenson (1965a) simulated a mobilization population for a SIMPO model

sampling experiment in which the gain in PCE provided by using LSEs instead of aptitude

areas was evaluated. The means and covariances of the generated scores had expected

values equal to those for the Army Classification Battery (ACB) tests in the mobilization

population. Predicted performance scores were computed from full regression equations

based on the population covariances. Separate validity vectors for eight job families were 4

based on the validities of 55 jobs (MOS) corrected for restriction in range to provide

estimates of job validities in the mobilization population. The effectiveness of eight two-

test composites with weights of one or two were compared, as assignment variables used

by an LP program, with the effectiveness of using full regression equations using all eleven

tests in the ACB. The criterion variables for which validities were available were primarily

Army school grades in an era when such grades were normative, reliable, truly indicative

of the soldier's job knowledge, and became a permanent part of -- soldier's record. The use

of such school criterion variables typically provide more dimensionality in the predictor-

criterion space and indicated greater PCE than does on-the-job criteria based on ratings.

The validities of the two combat aptitude areas (AAs) were, however, computed only

against criterion measures based on performance ratings of soldiers stationed in the

continental United States.

Twenty entity samples of size 300, thirty samples of size 200, and two hundred

samples of size 100 were generated. Appropriate quotas for each job family were used in

conjunction with an LP program to assign the entities in each sample to one of eight job
families. Assignment was accomplished once using the AAs as the assignment variables,

and a second time using the full regression equations as the assignment variables.

The MPP Army standard score was separately computed for each assignment procedure.

The distributions of the MPP standard scores for the two assignment procedures did not

overlap at all, even for the samples of size 100, and the Army standard score means

(mean = 100 and SD = 20) were 103 when AAs were used and 107 when full regression

equations were used as the assignment variables. The MPP Army standard score would

have equalled 100 if random assignment had been used.
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Thus, the gain over random assignment is roughly doubled by substituting full
regression equations for the AAs. In contrast, McLaughlin et al. (1984) found, using M2

as an estimate of differential prediction efficiency, that operational AAs were 64 percent as

efficient as full regression equations computed separately for each of 98 jobs. The

shredding out of job families into jobs and computing separate LSEs for each job was

shown in unreported Army model sampling experiments to increase considerably the

advantage of assignment by LSEs over the assignment by AAs. Thus the discrepancy

between the results (i.e., the gain in MPP due to use of LSEs rather than aptitude areas) of

Sorenson and McLaughlin, et al., would have been even greater if Sorenson had used

separate LSEs for jobs instead of for job families. This discrepancy may be attributable to

either differences in the PCE of the two test batteries, to the methodology for computing

PCE, or, more likely, to both.

In 1965 the Army transformed each soldier's aptitude area score to single digit

scores ranging from 0 to 9 in order to simplify operational assignment procedures. Model

sampling experiments were conducted in which several alternative scales (including the

operational 0-9 non-linear scale and an almost fully continuous range of scores) were

evaluated to determine their contribution to PCE. Sorenson (1967) reported on a model

sampling experiment in which entities were generated to have an expected predicted

performance covariance matrix with equal off diagonal elements. Assignments were made

using uniform quotas (0.0625 for 16 jobs) and again using perturbed quotas ranging from

0.0062 to 0.1187. Quotas were modified to provide for whole numbers of entities to be

assigned to each job.

The results showed that scales with more intervals were generally superior to those
with fewer intervals. Many different variables were considered. In one analysis, MPP

results, after assignment, were compared for four combinations of two assignment variable

scales and two selection policies. Selection policy A was to accept everyone with AFQT

scores greater than 10 (expressed as a percentile score). Policy B was the same as policy A

except that those with AFQT scores between 29 and 31 also had to have two LSEs above

90 (Army standard score). When the assignment variables are continuous full regression

equations the MPP Army standard score is 106.49 under selection policy A and 107.80

under selection policy B. When the full regression equation scores are converted to a one-

digit score and used as the assignment variables, the policy A MPP score is 105.83 and the

policy B MPP score is 107.74. The scale effect is obviously trivial in the Policy B

situation, but worth considering when selection is less restrictive.
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Sorenson (1965) provides a different perspective of the importance of the gain
provided by policy A over policy B (i.e., 106.49 vs. 107.80). He describes the following

impact: "Under the conditions resulting in an allocation average of 106.49, a total of

660 men were assigned in jobs in which their expected performance was below 90

(expressed in Army standard scores); in comparison, 358 were thus assigned under

conditions resulting in an allocation average of 107.80. This number represents a decrease

of 46 percent assigned to a job for which performance is predicted to be low (90 or

below)." (p. 3.) These results, along with the less dramatic increase of the number of high

performers (those with predicted performance Army standard scores of 130 or above), led

Sorenson to conclude: "These results may reasonably be generalized to the conclusion that
an important increase in the number of outstanding performers and a reduction in the

number of below-average performers may be achieved even though the increase in the

allocation average is so small as to appear inconsequential." (p. 43.) Sorenson makes an

important point, but we believe the comparison of policies A and B were not the best

examples, since policy B requires that everyone have two scores above 90. No one would

have had a score below 90 in the job to which an individual was assigned if the quotas had

permitted each man to be assigned to one of his highest two scores.

Another member of the Army research team, Harris (1967), used the SIMPO model

sampling design to evaluate the PCE of several pairs of batteries selected from a larger

experimental test pool. In each pair of equal sized batteries, one was selected to maximize

Ha and the other to maximize Hd.

Twenty tests were sequentially selected by each method. School final course

grades for 12 Army MOS were corrected for restriction in range to approximate validities

for a mobilization population. Similarly the intercorrelations of 32 experimental tests were

corrected to represent the same mobilization population. The intercorrelation matrix was

computed on a sample of 2480 soldiers while the sample size for the Army school courses

ranged from 103 to 305.

Assignments of synthetic individuals (entities) were accomplished using LSEs

computed ,T the specified battery and using an LP program with uniform quotas for the 12

jobs. Assignments were evaluated using LSEs based on all 32 tests. These LSE scores for

both assignment qnd evaluation were probably adjusted (the author does not indicate) tc

have means of 100 and standard deviations equal to the result of inserting tests (with means

of 100 and standard deviations of 20) into raw score regression equations. In this way the

MPP Army standard score after random assignment would equal 100.
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The batteries of size 5, 10, and 20 selected to maximize Hd were all superior to

those selected to maximize Ha. All differences were statistically significant. For the

batteries of size 5, with one overlapping test, the MPP scores were respectively 109.79 and
110.89, a 10 percent gain over random assignment provided through the use of Hd instead

of Ha.

Non-cognitive tests were selected early in the sequence using either Hd or Ha.

Arithmetic Reasoning, probably the purest measure of general mental ability for Army jobs,

was the first to be selected to maximize Ha, and "verbal" (a vocabulary and reading

comprehension test) was the last. Three of the best five tests selected to maximize Hd were

self description measures, the third to be selected was perceptual speed. Surprisingly, the
fourth test selected in the sequential test selection against Hd was verbal.

An existing sample of applicants or employees can be used as the source of

predictor scores in lieu of the generation of entities by model sampling techniques. To

conduct simulations for the evaluation of selection/classification policies, the computation
of predicted performance measures for every job can be accomplished (as LSEs based on

the total set of predictors), just as in the model sampling experiments described above. Alf

and Wolfe (1968) conducted a similar simulation of Navy jobs during the same era as the
Army was conducting the model sampling experimentation.

Five hundred eighty-seven complete data cases from 905 enlisted men who entered

the San Diego Naval Training Center during a single week provided the predictor scores for

this simulation. The assignment and evaluation variables compared in the simulation
include the following: (1) AA scores; (2) school grades predicted from test scores;

(3) a training course pass/fail criterion predicted from test scores; (4) training cost (without
pay and allowances); (5) training cost (with pay and allowances); (6) manpower shortage in

each rate (Navy equivalent of an MOS); and (7) criticality (the product of a school criticality
index and the value of the third measure listed above).

Assignments were made using an LP program to optimize, in turn, each of the

above 7 variables. For each of these seven assignments to jobs, plus one accomplished

using the operational (hand) method, and another by random assignment, the results were

evaluated using every assignment variable as an evaluation variable. As one would expect,

an optimal assignment algorithm yielded the best mean performance score when the

evaluation variable and the assignment variable were the same, but the third evaluation
variable described above when used as the assignment variable, was also second best when

2-45

SI



evaluated on each of the other variables (with the exception of the AAs); the AAs are

however, undoubtedly of minimal appropriateness as an evaluation measure.

The regression equation yielding predicted pass/fail in school courses also predicts

the school grades almost as well as does the regression equation developed to predict

grades. In addition, the predictor of pass/fail is uniformly better for lowering costs and

increasing the manning level index as compared to the predictor of grades. Thus the •

authors recommend the predictor of pass/fail as the assignment variable with the highest

across-the-board utility.

Three of the other evaluation measures, (4), (5) and (7) listed above, include

predicted pass/fail (Ps) as an ingredient. One wonders, if predicted grades had been

substituted for Ps in those formulae, whether predicted grades would have replaced Ps as

the second best assignment variable for these three evaluation criteria. Also, the metrics on
which the assignment results are expressed are not comparable. We cannot judge whether

the larger gain in percentage predicted to succeed provided by the pass/fail predictor is

really of greater utility than the gain in predicted school grades provided by the predictor of

grades.

Despite our skepticism as to the meaningfulness of their recommendations, we

believe this study was outstanding for its era. The seventh evaluation variable, which

combined a job criticality index with a measure of predicted P/F, deserves further

consideration, and possible emulation (of course, substituting predicted performances for

predicted P/F) by research personnel.

G. ESTIMATING PCE BY APPLYING META ANALYSIS DATA TO
MODELS OF THE NATIONAL ECONOMY AND THE NAVY

A different approach to the estimation of the selection/classification efficiency

obtainable from a battery is provided by Hunter and Schmidt (1982) and Schmidt, Hunter

and Dunn (1987). The first defines a hypothetical three-test battery and a model of the

national economy. The second applies a two-test battery to a model of the Navy. Both

models abstract all features of the target organization essential to the computation of PUE

under their assumptions. The major, more general, assumption common to both studies

relates to the preeminent role ascribed to general mental ability in the prediction of job

performance and the use of job complexity categories. The authors assume that there is one

dominant general factor in the space spanned by predicted job performance: a

unidimensional performance measure (not to be confused with a general mental ability
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factor in the predictor space) that accounts for all demands made on cognitive ability. A

corollary to this assumption is that the potential for predicting this primary performance

factor lies in a single measure--general mental ability--and that there are only one or two

reliably identified additional dimensions in the joint predictor-criterion space--psychomotor

ability and possibly perceptual speed. Also linking the two studies is the use of the

Dictionary of Occupational Titles (DOT) information on jobs and the results of the

U. S. Employment Service General Aptitude Test Battery (GATB) validity research.

These two studies differ from the studies described in the previous section in that

GATB results rather than military results provide the estimates of intercorrelations and

validities With respect to the Schmidt et al. (1987) model, generalized data from the

GATB were used in the Navy study, rather than actual military empirical data in

determining intercorrelations and validities.

The assignment techniques used in the studies in both sections are readily relatable.

For example, assuming their numerical computations were accomplished correctly, the

results of the Hunter and Schmidt (1982) study are the same as if the authors had generated

synthetic scores to yield an expected correlation matrix equal to the one they stipulate, and

then assigned these entities to jobs using a primal LP program. Similarly, assuming no

computational errors, the Schmidt et al. (1987) study would have obtained the same results

if they had used any one of the many off-the-shelf primal LP programs to make

assignments, and used readily obtainable column constants to reject a percentage of the

applicant population. Instead, they used a dual LP program (a modification, of which there

are many, of the Brogden-Dwyer optimal regions algorithm) to effect optimal assignments

and rejections. Our attention is centered on assumptions regarding the models of the

respective organizations and the characteristics of the predictor batteries, rather than on how

the effects of selection and assignment were determined.

Both the 1982 and 1987 studies rely on models of organizations in which

assignments are being made. The models, either of the national economy (1982) or of the

Navy (1987), consist of a description of job categories, and, separately by job category,

the number of individuals and the value of each individual's productivity. Major categories

were formed to maximize the credibility of the assumption that the jobs in each category are

homogeneous with respect to both their validities and the value of their output, while

keeping the categories few in number. In the Navy model, however, the validities of

predictors varied across job categories as a function of a unidimensional job characteristic,

job complexity.
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As described in Zeidner and Johnson (1989a), Hunter and Schmidt (1982) assumed

equal validity of general ability for all categories of jobs, specifically, product moment

correlation coefficients of 0.40, but assumed differential validities for both spatial ability

and perceptual speed. (i.e., validities are either 0.40 or 0.00, a detail which is not obvious

from Figure 4.1). Perceptual speed ability was assumed to have a validity (product

moment correlation coefficient) of 0.40 with the "performance in skilled trades" category, 0

and zero validity for performance in all other categories. Similarly, psychomotor ability

was assigned a validity of 0.40 for the "clerical" category and zero validity for performance

in all other categories. General ability was assumed to correlate 0.40 with each of the other

two abilities; it was assumed that these other two abilities provided half of their predictive 0

capability because of their general mental ability content, and were given a correlation

coefficient between the two of 0.16 to reflect the assumption that their non-zero correlation

was entirely due to their general mental ability content.

The effects of three alternative assignment processes on utility were computed for •

the model of the national economy. These three assignment modes were: (1) a random

process, (2) a hierarchical classification process using only general ability as a univariate

assignment variable, and (3) an optimal assignment process with separate two variable

LSEs used for all but one of the aggregated job categories.

The author's assignment process for univariate hierarchical classification was

essentially the same as the one used in our example in Chapter 1. However, in our

example, the differences in MPP scores across jobs were due entirely to differences in

validity, while in the national economy model these differences are due entirely to the

differential values placed on the productivity of job categories.

To accomplish the desired optimal assignments using only one assignment

variable--general mental ability--the population need only be ranked on general mental

ability and those with the highest general mental abilities assigned to the most highly valued

job, the next highest block on general mental ability assigned to the next highest valued job,

etc., until all jobs are filled. These same assignments would be made if an LP program

were used instead of this very simple process, when there is only one assignment variable

and differential values are specified for jobs.

It is frequently enlightening to visualize a computational process in terms of a

simulation. If scores necessary to conduct a simulation were obtained, optimal assignment

of the population to the job categories could be accomplished by computing predicted 0

performance in terms of the LSEs for each job category, weighting LSEs by job value, and
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using a LP program to assign individuals to meet the quotas for each category; the objective
would be to maximize the value weighed predicted performance for each job category. It

should be noted that even for the job categories that have only non-zero validities for

general mental ability, the LSEs would have non-zero negative weights for both the

psychomotor ability measure and the perceptual speed measure (two very efficient

suppressor variables are present).

This approach could have been used for a sample of synthetic entities generated in
the manner discussed in Zeidner and Johnson (1989a). Hunter and Schmidt used a

numerical solution of this same problem expressed as definite integrals of normal curve

functions to arrive at a solution that should provide the same utility score as would result

from the alternative simulation process defined above. Either solution should provide the

same value for classification efficiency; for these two studies PCE would be expressed in

terms of utility instead of a MPP standard score.

* The Navy model used in Schmidt et al. (1987) is very similar to the national

economy model study in that both studies model a system in terms of job categories. For

each of these job categories the authors stipulate the number of incumbents, the value of the

production of an individual, and the predictability of an individual's performance. The

0 Navy model differs from its predecessor ir the following ways: (])jobs are categorized on

a continuum of complexity, instead of by traditional major job families, (2) more realistic

estimates of test alidities for each job category are provided, (3) the perceptual speed

ability is either omitted or combined with general ability, and (4) a rejection category is

0 included. We will discuss each of these differences.

Hunter (1980) in a study based on the meta-analysis of GATB data concluded that

this battery tapped three abilities, essentially the three utilized in the national economy

model. After classifying the jobs of the DOT titles into one of five complexity levels, he

concluded that general mental ability and psychomotor ability were complementary,

providing essentially equal validity for the combined measures across all but clerical jobs.

Complexity, defined as the level of cognitive information processing demands of a

job, is claimed to require more general mental ability and less psychomotor ability at the
high end of the complexity scale, and vice versa at the low end of this scale. The

identification of a Navy job's location on this continuum, by first matching the Navy job

with a DOT job that has a tabled complexity vallie, permits a conversion that provides the
validities for both general mental and psychomotor ability. Jobs not convertible to a DOT

complexity level were assigned to a complexity level by judgment, and, through their

2-49



membership in the job group having a given complexity, received an estimate of zero order

validities of both ability measures against performance on the job. Since the correlation

between those two ability measures was assumed to be 0.35, the multiple correlation

coefficients are readily computed. These latter coefficients, using validities first estimated

for the GATB and then adjusted for the ASVAB, yield the following multiple correlation

coefficients (the highest of the five complexity levels listed first): 0.64, 0.65, 0.59, 0.54,

0.49.

While there are interesting theoretical implications associated with the complexity

continuum, the advisability of modeling the Navy in terms of complexity levels, instead of

more traditional job families, hinges on three practical considerations. The first is whether

validities are more homogeneous for jobs clustered on this continuum than would be

provided by alternative clustering techniques. The second is whether the validities of jobs

are better estimated by their identification with a complexity level than by alternative

categorizations. The last is whether jobs can be as objectively classified into complexity

levels as into the more traditional groupings.

Results for selection and classification using the Navy model were provided

separately for the univariate hierarchical classification mode and the two variable

classification modes that depend primarily on hierarchical layering as the source of most of 0
the added classification efficiency. The univariate selection-assignment mode results were

reported separately for: (1) a purer form of general mental ability, and (2) a general mental

ability measure augmented by a clerical speed measure to form a single operational test.

The authors apparently believe that the perceptual speed ability, if measured by a

separate test and included in the battery, would have added some PCE to such a 3-test

battery, as compared to the PCE in the two-test battery used in conjunction with the Navy
model. Their rationale for this treatment of clerical speed was that this ability is carrently in

the ASVAB and thus cannot be presented as a potential augmentation of the battery, and

that much of the contribution of a clerical speed test to selection/classification could be

captured in the Navy model through the combining of general mental ability and clerical

speed measures. It appears likely that the deleterious effect that the addition of a third

assignment variable would have had on the usefulness of their analysis procedure was also

an important motivator in the making of this decision.

The results reported for the successive upgrading of the test battery is in terms of

dollar value productivity that potentially can be provided by optimal selection and

classification. The assignment variables to be maximized in the assignment process are
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value-weighted predicted performance scores and the assignment process is equivalent to

an LP program. It is not feasible to convert these results to MPP scores comparable with

the results of other studies.

The interpretation of the results expressed in utility terms requires the consideration
of the assumptions and procedures involved in arriving at the dollar value and the spread of

D productivity for jobs at different levels of complexity. Other controversial issues that could

affect the dollar value of results include the use of an "equilibrium model" instead of a
"cohort model" and their methods for handling of costs. A discussion of these issues is

beyond the scope of this chapter.

When utility is expressed in terms of gain over random selection and assignment,
the gain provided by use of general mental ability alone is reported to be 15.07 percent.

Changing the basis of comparison, the gain over general mental ability (as the surrogate for
the ASVAB) by augmenting the general mental ability measure with perceptual speed to
form a single test is 3.19 percent, and the gain over general mental ability provided by a
two-variable optional assignmer, process, using the GATB psychomotor test as the second
variable, is 5.20 percent.

The method ':-,d to reject applicants appears to have an equivalent objective to our
MDS process. kccording to the authors, "The optimal assignment is to reject those whose
productivit, would have been least. This can be done by 'adjusting' performance scores in

the rejecz condition so that selection of those with highest adjusted performance scores will
place the correct applicants in the reject group .... these will be the workers for whom there
is least loss if they are assigned to the reject category. If the adjustment coefficient for each

reject category is set correctly, the necessary number of recruits will be assigned to that

category in an optimal manner." (p. 66.)

While it appears to us that the authors have the correct idea of how to reject those
who would perform the worst if accepted and optimally assigned, they should not have

searched for adjustment coefficients for the reject "jobs." The adjustment coefficients
(what we call the job or column constants in Chapter 1) corresponding to each job are the

same for both selection and classification; the additive job constant used to optimize

classification is the same as the one which will optimize multidimensional selection. Once

the appropriate job constant is added to each predicted performance, each applicant should
be tentatively assigned to his highest adjusted score, and enough of those with the higher

adjusted scores selected to fill the quotas; those remaining after the quotas are filled are

those that should be rejected.
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It would be interesting to consider the usefulness of applying the Schmidt et al.

(1987) Navy model approach to the Army. The Army could undoubtedly also be modeled

in terms of the complexity continuum. Using the validity data provided by McLaughlin

et al. (1984, p. 22), and applying rule-of-thumb principle R#7, we see that good

differential validity is, when considered separately, provided by two of the nine aptitude

areas (AAs), the other six AAs have validities against the corresponding job families that

are lower than their mean validities for the non-corresponding jobs.

The two AAs showing good differential validity (CL and ST) had their validities

computed on samples of 10,368 and 7,061, respectively; the smallest of the other job

families still had an N of 2,571. This configuration of results is confirmed in other 0
samples and we believe it would be hard to argue convincingly that the PCE indicated by

this data is based on error and that there are only two abilities measured by the ASVAB,

general mental ability and clerical speed; there is at least one ability tapped in the joint
predictor-criterion space for Army jobs in addition to general mental ability and clerical 0

speed.

Accordingly, we believe the Army model would have to represent the ASVAB by

no fewer than three ability measures, each measure consisting of a composite that may

contain several tests; for the purpose of the model it makes no difference whether a 0

composite consists of one test or many. The PCE and corresponding utility for that three-
test battery would provide the base line against which the PCE and eventually utility for the
same battery augmented by a fourth test, the GATB psychomotor test, could be compared.
We would be skeptical of the meaningfulness of finding out what a psychomotor test 0

would add to only a single general mental ability test.

In summary, we find the two studies described in this section to be important
additions to the literature on the contribution of classification to utility. However, we

would not recommend that decisions concerning the value of the GATB psychomotor test

be based on these two studies. Questions about the basic assumptions need more complete

answers and the representation of the ASVAB by more than one measure needs to be
incorporated in the Navy model before the value of additional tests for Navy classifiction

can be realistically estimated. Furthermore, all the utility results of the study are highly

dependent on the use of value-weighted assignment variables in the selection and

classification process. Al! of the gain over random classification from using a single
predictor (general mental ability) in the Navy model would vanish if test composites used in

the assignment process were not value weighted. Since such value weighting implies the
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making of major policy decisions on quality distribution involving considerable
organizational sensitivity, the results from the Navy model with all such value weights

equal to one -ight be of more relevance to decisionmakers.
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APPENDIX 2A

BASIC CONCEPTS AND NOTATION

APPENDIX 2A.1: INTRODUCTION

The technical appendices for this chapter and the following chapters use a consistent

matrix notation. All later appendices, except where specifically noted, will build upon

concept development and derivations presented in earlier appendices. The order of

presentation is a compromise between the occurrence of concepts in the text and the need

for a sequential presentation of technical concepts. Once notation and/or concepts have

been presented we will freely use them thereafter.

APPENDIX 2A.2: SOME FREQUENTLY USED MATRICES

All matrices are designated by capital letters. Capital letters always indicate a matrix

except that R is occasionally used to represent a multiple correlation coefficient and S has

been used to represent a standard deviation. A capital letter without a subscript represents a

class of matrices; a subscripted matrix stands for a specific type of matrix within its class.

An explanation in the text may sometimes take the place of a subscript.

A standard notation for dimensions is used to describe matrices. The first

dimension describes the number of rows and the second dimension the number of

columns. Commonly used matrices are as follows:

Y = an N by n matrix of standardized predictor (test) scores; underlining indicates
that each score in the matrix is divided by the square root of N; for example,
Y'.y = Rt.

Zu = an N by m matrix of standardized criterion scores; underlining indicates that
each score is divided by the square root of N; for example: Y'Zu = V', Zu'Y
= V, 7,,'& is usually unknown but may be hypothesized in some model
sampling experiments.

Z = an N by n matrix of predicted performance (PP) scores the standard
deviation of these scores is .qual to the correlation of the PP variables with thfe
corresponding criterion variables;Sp - 1 /2 Z'Y = V, ZZ = Cp.

Q = an N by k matrix of factor scores.
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R = matrices of correlation coefficients with ones in the diagonals.

Rt = n by n matrix of correlation coefficients among predictors (usually selection

or classification tests).

V = m by n matrix of validity coefficients (correlations between n predictor

variables and m job criterion variables); Zu'Y_ = Sp-IZ = V.

C - covariance matrix with variances in the diagonals.

S diagonal matrix of variances (e.g., the diagonal elements of C).
Cp = Spk/2(Rp) SpI 2.

C = m by m covariance matrix; the covariances among predicted performance

estimates; the diagonal elements are multiple correlation coefficients:
Cp = V (Rt - I Vt .

F = factor solutions in matrix form; the elements are regression weights applied

to the column variables in standard score form to estimate the dependent
variables represented by the rows. FF' equals or approximates either an R or

C matrix.

A = eigen vector matrices; A'A = I and, if a square matrix AA' = I; if A is a

rectangular, orthonormal matrix, AA' = I and A'A does not equal I but is

idempotent.

D = eigen value matrices; diagonal matrices such that ARA' = D, ACA' = D,

etc.

T = transformation matrices such that RtT = Ft, VT = F t, or FTr = Fr.

Ft = an orthogonal factor solution of Rt, thus FtFt' = Rt (an n by n or an n by k

matrix, k < n).

Fv = an orthogonal factor solution such that FvFv' approximates or equals Cp; Fv

is a factor extension of FE into the joint predictor-criterion space (an m by n or

an m by k matrix, k < n, with the number of factors, k or n, equal to the

corresponding FO.

Fc = a principal compoi:ent factor solution of Cp; FcFc' = Cp and Fc'Fc = Dc,

where Dc is a diagonal matrix of eigen values; Fc = AcDc 1  .

Fp = an orthogonal factor solution derived as an orthogonal transformation of Fv,

which equals Fc, (assuming that null factors are equivalent to "no"

factors);when Ft has n columns, and m > n, m - n columns of Fc will be all

zeros while Fp will have only n columns; when n > m, Fc will have only m

columns while Fp will have (n - m) null, all zero, columns.

H = an m by m matrix in which each element is equal to (1/m).
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G = (Fv- HF,).

Ha = tr (FF,') = tr (F,'F,); Horst's "absolute validity" index, a measure of
selection efficiency for FLS composites in a multi-job/criterion situation.

Hd = _r-(G'G) = tr (GG'); Horst's "differential validity" index, an estimate of
potential classification efficiency.

Note that all factor solutions used in these appendices are in either total test space or

joint predictor-criterion space; no solutions in common factor space will be utilized. We

will not make the distinction between factor analysis and component analysis sometimes

made by investigators in order to emphasize the differences between the use of common

factor space and total test space.

APPENDIX 2A.3: SUPERMATRICES

The matrix Rt bordered below by the matrix V forms a m + n by n supermatrix

denoted as

and

[ T= [.] F

Also,
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R0

Note that •..j can be thought of as an oblique factor solution in which the column

variables (all tests) are oblique factors, and the row variables are the independent variables

(the variables that load on the factors).

Using T as the means of transforming this oblique factor solution into an
orthogonal solution, as indicated above, it is useful to define T- 1 as a matrix whose
elements are the cosines of the angles between the row variables (the orthogonal factors)
and the column variables (the oblique factors). A square matrix, Ft, comprising a complete

factor solution of Rt will have the sums of squares for each row equal to one and column

variables, orthogonal factors, with designated standard deviations of one. The elements of
such a solution can be considered to be the cosines of the angles between vectors (in n
space) representing the row variables (the predictors or oblique factors) and the orthogonal

factors. Thus FtT - 1 = Rt and it follows that (Rt)T = Ft. When the particular factor

solution AtDt 1F2 is chosen to be equal to Ft, we find that T = Att - 1/2 .

The same logic that calls for (Rt)T to equal Ft is equally applicable to the
relationship displayed by VT = Fv, and the columns of Fv represent the same variables,

i.e., the same factors, as the columns of Ft. Those factors are defined in terms of predictor
(test) variables only; the criterion variables that represent the rows of F, are correlated with
factors that are defined entirely in terms of the test variables. Thus, Fv can be thought of as
the extension of the factors defined in test space into the criterion space. Defined in test

space and extended into criterion space they can be said to span a joint predictor-criterion

space.

APPENDIX 2A.4: IMPORTANT RELATIONSHIPS AMONG THE
DEFINED VARIABLES

A number of relationships among the matrices defined above are important to later

developments. A number of these that occur most frequently are given below:

Rt =At Dt At'.

Ft = (R) 1/2 = At (Dr) 1/2 At', a Grammian factoring of Rt.

Ft = At Dt 1/2, when defined as a principal component (PC) solution of.
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Qt = Y R- 1 Ft. an N by n matrix of factor scores corresponding to a specific Ft.

Ft = Y' 1.

Fv = Sp-1/2Z'Ot •

T = A D-1/ - A', if Ft = A D112 A', a Grammian factor solution.

T = A D-1/2 , if Ft = A DIf, a principal component (PC) solution.

T = (Ft'Ft)-
1  Ft'. for any Ft such that FtFt' = Rt; (note that this is the Dwyer

(1937) formula for T).
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APPENDIX 2.B

THE JOINT PREDICTOR-CRITERION SPACE AND

THE FACTOR EXTENSION PROCESS

We have denoted an N by n matrix of factor scores divided by the square root of N

as Qt and noted that Ft =.. 'Ot and F, = Sp- 1/2Z'.t. The concept of factor extension

requires the definition of Qt in terms of the predictor variables, that is Y, and the obtaining

of the correlations of the criterion variables with these same factor scores. Describing Qt in

terms of Y we have Qt = Y Rt-IFt, and

Fv = Sp-1/)Z'Ot = S p-1/2Z'Y Rt-Ft =VRt-IFt.

Assuming Ft = AtDt1/2 and noting that

Rt-lFt = AtDt-1At'AtD 1/2 = AtDt- 1/2, Fv =VAtDt- 1/2

we see the same expression we obtained using either our .T" approach or Dwyer's

0 formula.

An investigator may choose to first compute Ft, rotate to simple structure and then

extend the rotated solution to the criterion variables. Alternatively he/she may wish to

factor Cp, i.e., compute Fc, rotate to a meaningful solution, and then extend to the
0 predictors, permitting definition of the rotated factors in terms of the better understood

selection-classification test variables.

If we wish to start with a PC solution of Rt, T is equal to AtD -
1

/2 and we see that

Ft = Rt T = At Dt 1/2 , and Fv = VT = VADt- 1/2. After the rotated solution is obtained as

RIAD, 1/2Tr, the rotated solution in the joint predictor-criterion space is VAtD- 1/2 Tr.

Note that if we substitute Ft = AtDt1 /2 in the Dwyer formula for T we see that it simplifies

to T = AtDt- 1/2, just as we would expect.

0 Commencing with Fc, a PC solution of Cp, and rotating to simple structure in

terms of the criterion variables, resulting in Fc Tr, the investigator would wish to extend

his rotated solution to the predictor space. This extension process would commence by

finding Tp such that VTp = Fp = Fc. The rotated solution for the predictor variables would

0
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then be RtTpTr. The required Tp can be written as AtDt- 1/2 postmultiplied by the eigen

vectors of (Fv'F,).

Fv computed as the factor extension of Ft can be transformed into a PC solution of ,

Cp by finding an orthogonal transformation matrix Ap, such that F, Ap = Fp. This
Fp must have the characteristics of a PC solution. That is, Ap'Fv'FvA, = Dp, where
Ap'Ap = I, ApAp' is an idempotent matrix and Dp is a diagonal matrix. It is well known

that the matrices that will result in the diagonalization of a Grammian matrix, M, in

accordance with the equation A'M A = D is unique and must be the eigen vectors and
eigen values of M. Thus, there can be only one orthogonal transformation of F, that

exhibits this rotation of Fp'Fp by an orthonormal matrix and its transpose into a diagonal 0
matrix--Fv Ap must be the PC solution, Fp. The desired expression for Ft, is seen to be as

follows: Ft = RE At Dt- 1/2 Ap Tr which corresponds to the solution in the joint space of

Fvr = VAtDt-1/ 2 ApTr.
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APPENDIX 2C
THE USE OF TRIANGULAR FACTORS IN TEST

SELECTIONS

The accretion method of sequential test selection to maximize the prediction of a

single criterion commonly uses a triangular factor solution of the candidate tests extended to

a single criterion variable. Horst (1955) adapted this well known test selection approach to

multiple criteria, that is, to maximize the sum of the squared multiple correlation

coefficients of the selected tests against performance in more than one job. Although the

publishing date for the selection method that maximizes Ha is a year later than for the

method that maximizes Hd, it is clear that the use of Ha constitutes a relatively minor

generalization of the traditional accretion test selection method--as compared to the

replacement of Ha by Ha as the figure of merit in the selection of tests.

In describing his sequential test selection method for maximizing Hd, Horst (1954)

makes reference to Dwyer (1951) as the source of a method that is essentially a square root

or triangular factorization of Rt extended to V. Dwyer's computing algorithm was

designed for implementation on the desk calculator and in this computer dominated age is

of little interest. However, the concept of the Gauss-Doolittle triangular factorization

method remains an important one. We provide a discussion of an example in this appendix

and present a detailed algorithm for test selection that utilizes triangular factorization in

Appendix 3C.

The first three tests selected in accordance with a prescribed figure of merit are

depicted in the following triangular factor solution in which the factor loadings are written

as semi-partial correlation coefficients. These three factors are readily extended to the

remaining test variables and to the criterion variables using the same computational

approach. The following example shows three triangular factors extended to three

additional test variables and to three criterion variables.

We can depict a three factor triangular solution in which the first factor, L1 ,

corresponds to the first selected factor, the second factor (L2 .1) is the component of the

second selected variable that is orthogonal to the first variable after adjustment to unit

length. Similarly, the third factor (L3 .12 ) is the component of the third selected predictor
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variable orthogonal to both the first and second variables; each variable or variable

component representing a factor is adjusted to unit length (i.e., has a standard deviation of

one).

We depict the loading of the ith variable on Factor LI as ril, on L2 .1 as ri(2.1), and

on factor L3 .12 as ri(3.12). In the following example, the first three rows (ie.,Ftl),
represent the predictor variables selected to define the factors; rows 4 through 6 represent

the remaining predictor variables, and rows 5 through 9 represent the criterion variables.

EXAMPLE

L1 L2 .1  L3.12

(1.0 0.0 0.0 ) ( )

(r21 1.0 0.0 ) ( Ftl )

(r31 r3(2.1) 1.0 ) ( )

( .............................. ) (......)

(r41 r4(2.) r4(3.12) ) ( )

(r51 r5(2.1) r5(3.12) ) ( F2 )

(r61 r6(2.1) r6(3.12) ) ( )

( .............................. ) (.........

(rel re(2.1) re(3.12) ) ( )

(rf rf(2.1) rf(3.12) ) ( Fv )

(rgl rg(2.1) rg(3.12) ) ( )

If each variable takes its turn as the last column of the triangular matrix Ftl, this
augmented factor matrix then extended to the criterion variables to become Fv, and the
variance of the last column of Fv computed, the predictor variable contributing the least to

Hd can be identified. The coefficients in this last column of Fv are the regression weights

appropriate for application to the predictor component that is orthogonal to all of the other
predictors remaining in the pool of predictors. These coefficients are equivalent to the

elements of W, i.e., regression weights, that Brogden (1959) notes make no contribution

to classification efficiency when the weights are essentially equal across jobs. Brogden's
method for selecting tests for elimination is discussed further in Appendix 3A.
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The algebraic equivalent to computing m separate triangular F, solutions, each

solution placing a different variable in last place, is more economically obtained by using

Horst's formula, Hd = Tr (Cp) - (1' Cp 1)/m. The equivalent of identifying the variable

with the smallest regression weights after minimizing these weights by subtracting the

appropriate constant (i.e., the mean value), is obtained by retaining the variables in Cp
which provide the largest value of lid as a function of Cp.

The sums of the squared elements of each row of Ft1 are equal to 1.0. This sum of

squares for the remaining rows, for all rows below Ftl, is equal to (Ri(1,2,3)) 2, the multiple

correlation coefficient between the ith variable and the least square prediction of the ith

variable based on the first three selected variables.

An algorithm for creating triangular solutions like FtI bordered below by Ft2

(e.g., the "square root" algorithm ) as shown above is readily extended to additional

variables for which the correlation coefficients with variables 1, 2, and 3 are known. The

F, created by this triangular factorization algorithm is a factor extension solution; thus F,

equals V (Ft' FtI)- 1 FtL in accordance with Dwyer's formula for provision of a factor

extension solution.

The square root factorization algorithm uses a transformation matrix comparable to
a T matrix described in Appendices 2A and 2B as the multiplier of the k orthogonal factors

bordered by an oblique factor to create the (k+l)th orthogonal factor. The oblique factor is

the (k+l) t predictor selected for inclusion in the orthogonal factor solution. The Tk+1 that

creates the solution for an additional orthogonal factor to be added to F2 t provides loadings
on the same new factor for the criterion variable. This successive adding of factors to the

test space and the extending of these factors to the criterion space is described in Appendix

3C.

Horst's "accretion" algorithm for successively selecting tests to maximize his

"absolute validity" index, Ha, calls for producing a triangular factor solution and extending

this solution to the other variables. The rows corresponding to the criterion variables

define a matrix equivalent to the factor extension matrix, Fv. Using the same notation as

above we will examine an example with three jobs, e, f, and g, with respect to the first

three tests selected by accretion. Ha is constructed as the sum of the squared elements of

each column of F, referred to as: Hal, Ha2, Ha3. For our example we define each of

these sums of squares, Haj, as follows:

2-65



Haj = (re1) 2 + (rf1) 2 + (rgl) 2 , forj = 1;

Haj = (re(2.1))2 + (rf(2.1)) 2 + (rg(2.1))2, forj = 2; 0

Haj = (re(3.12))2 + (rf(3.12))2 + (rg(3.12))2, forj = 3.

In the accretion test selection procedure the value for Haj is successively maximized

through the judicious selection of the next test, keeping all previous selected tests; •

Ha = SUMjk Haj.

The "accretion" test selection sequence in which Ha is successively computed is

comparable to the formula Ha = tr (Fv'Fv). Horst's index of absolute validity can also be

written as a sum of the squared multiple correlation coefficients. For the above example 0

this would be Ha = SUMm (Ri(1 23))2 , or in matrix notation, Ha = tr (Fv Fv'). In this

example, Ha = (Re(123)) 2 + (Rf(123))2 + (Rg(123)) 2 and (Ri(12 3))2 = (Ril) 2 + (Ri( 2 .1))2 +

(Ri( 3.12))2 , for i equal to e, f, and g.

Similarly, Horst's "differential validity" index, Hd, can be defined in terms of

successively determined values of Hdj where each such value, as with Haj, represents the

,.intribution of the orthogonal components of the selected variables (tests or factors) to the

overall index Hd. In our above example Hd = SUMjk Hdj, where Hdj = (rel - rl*)2

" (rfl - rl *) 2 + (rgl - r) 2 , for j = 1; Hdj = (re(2.1) - r2*) 2 + (rf(2.1) - r2*) 2

+ (rg(2.1) - r2*) 2, forj = 2; Hdj = (re(312) - r3) 2 + (rf(3.12) - r3*) 2 + (rg(3.12) - r3*) 2 ,

for j = 3; rj* is the mean of the jth column of F.. In matrix notation,

Hd = tr [(Fv - HFv)'(Fv - HFv)], where H equals an m by m matrix whose elements all

equal (1/m).

As true with respect to Ha, Hd is successively maximized in Horst's accretion

algorithm through the judicious selection of the next test to be added to the test battery.

Hd can also be computed in terms of an orthogonal rotation of Fv, i.e., Fv A, as follows:

Hd = (Fv A - H Fv A) (FvA - HFvA)'. When rewritten as Hd = (Fv - HFv) AA'

(Fv - H Fv)',it becomes obvious that any transformation matrix such that AA' = I, as

would be true of any orthogonal transformation, will give the same value for Hd. Thus

while Horst made use of an F, which was a triangular factor solution, any other orthogonal

transformation of Fv, that is any factor extension of Ft, or orthogonal transformation of Ft,

would serve just as well.
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APPENDIX 2D
HORST'S CONCEPT OF DIFFERENTIAL VALIDITY

AND HIS HD INDEX

It seems to us from Horst's (1954) description of his differential validity (DV)

index that he first provided a basic concept formuiating a measure he intuitively believed to

be related to classification efficiency, and then provided computational simplifications for

the case where the interest is in PCE, rather than in CE. Since we believe DV has a more

general importance than the provision of an intuitive basis for Hd, we first present a more

detailed description of the basic concept of DV and then carefully point out the manner in

which Horst chose to restrict his DV concept in creating his simplified formulae for Hd.

The general concept of DV can be described as the prediction of the criterion

differences, between pairs of PP scores, by the predictor differences between

corresponding pairs of predictor variables. Intuitively an efficient classification process

implies being able to decide effectively between each pair of possible assignment

alternatives. The overall index of decision effectiveness is the aggregate of all of these

pairwise decisions. The DV index measures the covariance between the predictor

difference scores and the criterion difference scores.

Horst's DV index is a measure of classification efficiency obtainable when the

maximally effective assignment variables (FLS composites) are used. We have

consistently referred to this kind of efficiency as potential classification efficiency (PCE) as

contrasted to a measure of the classification efficiency of the operational composites that are

not FLS composites; the latter is simply classification efficiency or CE. Since measurement

of the PCE of the battery requires the use of FLS composites (i.e., predicted performance

or PP variables) as the basis of the predictor differences and these same variables are

appropriately used as the surrogate criterion variables, it becomes possible to greatly

simplify the computing formula. This simplified computing formulae must not be used

when the assignment variables are not FLS composites; the application of Horst's DV

concept to measure the CE of operational ASVAB aptitude areas, or any other set of test

composites that are not FLS composites, must commence with a more basic formulation.
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Conceptually, the unit of analysis for computing a DV index for measuring PCE is

each possible pair of criterion scores in the sample: the jth criterion paired with the kth

criterion for the ith individual. The classification decision is visualized as one of
distinguishing between the jth and kth job for m(m - 1) pairs of different jobs. Each pair

of jobs is matched with a corresponding pair of predictor variables. It is readily seen that

Horst's DV index of PCE (Hd) is almost, but not quite, a correlation coefficient; it is
actually a covariance. Before simplification this index is a sum of m(m - 1) cross products

of difference scores divided by m, where m is the number of jobs.

The difference between the jth and kth criterion score will be denoted as djk and
corresponding difference for the predictor scores as Pjk. Each cross product, Cjk, is equal

to dj :i z Pjk. Thus a cross product, Cjk, one for each unit of analysis,is as follows:
Cjki = (Yji - Yki) (zji - Zki).

We assign the symbol Hp to the more general concept of the DV index which does

not assume the equality of Pjk and djk. Horst did not discuss the possibility of using
predictor pairs other than FLS composites; we restrict our more general model to predictors

that are PP variables (but not necessarily FLS estimates) with standard deviations equal to
their validities. Using (djk) to designate an N by m2 matrix of criterion difference scores
and (Pjk) to designate the corresponding N by m2 matrix of predictor difference scores we
can write Hp as follows: Hp = (1/m) tr ((pjk)'(djk). Each of the m2 diagonal elements of
(pjk)'(djk) takes the general form: SUMiN (Yj - Yk)(zj - Zk) = Yjzj + YkZk - 2 yjzk. As j

and k each take all values from I to m the sum of these 4 m2 terms can be written in terms

of the score matrices Y and Z as follows:

2 (tr X' Z) - 1' (Y.'ZL) 1). Since both Hd and Hp are based on only the
m(m - 1)/2 different pairs, and m of the m2 difference scores for each individual are equal

to zero, Hp = tr (Y'Z) - (1'(Y.'z) 1)/m. Using similar logic, Hd = tr (L'Z) - (I'(Z'Z)

1)/m = tr (Cp) - (l'Cp 1)/m.

Just as Ft can be extended to the m criterion variables yielding the extended factor
solution, Fv, this solution can be extended, using the same approach, to the n(m - 1)
variables defined as the differences between the jth and kth criterion variables. The factor

loaaings of these m(mn - 1) difference variables on the factors found in Ft and F, provide a

factor solution we refer to as Fh.
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The criterion differences can be expressed in terms of PP scores, as in (zj - zk) or

as in the differences between the rows of Fv. The rows of Fh can be duplicated as the

differences between the rows of F. Thus, we can define Hd in terms of either Fh or F.

We now consider a set of matrices, one for each individual, whose general term is

(zj - zk)2 . This matrix, Mi, is defined as follows:
Z z 2 Z z -- 2 2 1 z m  2

Iz - zl ,1 1 . ..........

I Z ) 2 (  _ z 2 (Z )2

Z ,1) 2 z2) ............ 2
- ZmMi =

.......... .......... . ...... , ..........
(Zm - Zl) 2 ( )2__, 1) z m  - Z2j . .......... (m - A 2

Note that the sum of the elements of all Mi, each individual's matrix, across N
individuals, (i.e., SUMiN Mi) divided by N, equals double the value of Hd. Considering
the jth column of each Mi separately, we see that summing across all N matrices and

dividing by N yields the squared standard deviation of the PP variables (S,2) around the
grand mean of these criterion variables plus the squared difference between the mean of the
jth criterion score and the grand mean. Summing over the m columns and dividing by N
times m2, the total number of terms, yields two times S,2 . Since the m diagonal terms of
each Mi have zero values, the average of the m(m - 1) terms either above or below the
diagonal yield a value of S,2. We see that Hd equals m times S,2 since Horst divided his
sum of squares by N times m, rather than N times m2 .

As shown in a paragraph above, Sz2 can also be expressed in terms of F.
A vector in which each element is the mean of the corresponding column of F, represents

the mean of the PP scores in terms of each of the regression weights of each of the
column variables. The sum of the squared deviations of each row vector of F, around this
"mean" vector gives the product of m and Sz2 and is thus seen to be equal to Hd.
We find it convenient to write m(Sz) 2 in matrix notation as follows: m(S,) 2 = Hd =
tr [(Fv - HFv)(Fv - HF,)'] where H is an m by m matrix for which every element is

equal to 1/r. Each element of every column of HFv is equal to the mean of that column so

that (Fv - HFv), referred to as the matrix G elsewhere, is a matrix for which the sum of its
squared elements is equal to Hd.

We demonstrated above that Hd = tr (Cp) - 1' Cp 1 (1/m). Horst (1954) provides

this formula in different notation on page 25, formula 43. It is very easy to demonstrate
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that tr (F, - HFV) (F, - HFv)'is equal to tr (Cp) - 1' Cp1 (1/m). Multiplying out GG',

we have tr (FFv') + tr (HFFv'H') - tr (HFFv') - tr (FvFv'H'). When F, is a

complete factorization of Cp, Fv Fv'= Cp; this covariance matrix is included in each of the

four terms. The first of these four terms is equal to tr (Cp) and we or:; -,! .o show that

the remaining three terms are equal to - (1'Cpl)/m to complete our demonstration.

It is obvious from its definition that H = H', and only a little 1-7 uovious that

HCp = CPH' since, for a symmetrical matrix such as Cp, the means of the columns must

equal the means of the corresponding rows. The remaining three terms can De written as

follows:

tr HCp = SUMPm (mean of the jth column of Cp) = (l'Cpl)l/m

tr CpH = SUMjm (mean of the jth row of Cp)j = (l'Cpl)1/m

tr HCpH = m2 times [(grand mean of all elements of Cp)/m] = (l'Cpl)1/m

Thus, the sum of the remaining three terms, considering signs, is seen to be minus 0

(l'Cpl)/m and the equality of tr (GG') to tr (Cp) minus (l'Cp 1)/m is proven.
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APPENDIX 2E
APPLICATION OF A DIFFERENTIAL VALIDITY CONCEPT

TO MEASURE THE CLASSIFICATION EFFICIENCY
OF SETS OF TEST COMPOSITES

The index Hd provides an approximate measure of the potential classification

0 efficiency (PCE) of a predictor battery. This index is of no use when it is desired to

measure the classification efficiency (CE) of an existing set of operational test composites

that are not full least square (FLS) estimates of performance on the jobs for which they are

used as assignment variables. The value of PCE for a battery provides an upper bound for

0 the CE that is obtainable for any set of test composites.

We believe that the index, Hp, described in the previous appendix is as appropriate

for measuring the CE of a set of operational assignment variables as Hd is for determining

the PCE of a test battery. In this appendix we describe a practical approach for using this

0 index as an approximate measure of CE.

Using me notation of Appendix 2A, an N by m matrix of predictor scores, in

standard score form--with each element divided by the square root of N--is written in

underlined bold face type as Y. An N by m matrix of FLS estimates of the performance

measures of m jobs, also with each element in standard score form and divided by the

square root of N, is written as Z. Thus Sp- 1/2Z'Y = V, where V is an m by m matrix of

validity coefficients whose rows represent the jobs and the columns the corresponding

predictor composites.

To convert V into the covariance matrix of interest, we need two m by m diagonal

matrices whose non-zero elements are SDs: Sy has the same diagonal elements as does V,

with zeros elsewhere; Sp has as its diagonal elements the validities of each FLS estimate of

* job performance, and zeros elsewhere. The order of the y and z variables in these two

diagonal matrices must, of course, correspond. Using these three values we can define Hp

as follows:

Czy = SP V Sy, (1)
Hp = tr (Czy) - 1' Czy 1(1/m) (2)
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When the predictor composites in the Y matrix are FLS estimates, our Hp index

becomes Hd and is an estimate of both CE and PCE.

MacLaughlin et al. (1984) proposed dividing what we refer to as Hd by m to obtain

the index they call H 2 ; Hd/m = H2 . They proposed using their own index, M, for

measuring the CE of alternative operational sets of test composites. M was then divided by

H to estimate the ratio of CE/PCE. While we would not use M, we like their proposed use

of CE/PCE as a means of estimating the relative classification efficiency of alternative sets

of classification composites and/or alternative job families.

The comparison of Hp indices for sets of composites possessing different values of

m poses a difficult problem. The solution of McLaughlin et al. was to divide their raw 0

indices by m, a process comparable to the division of Hp and Hd by m to obtain a value that

is the actual covariance, rather than m times the covariance. Unfortunately this covariance

value does not reflect the greater PCE and CE that comes with a larger value of m. Hd and

HP undivided by m greatly overestimate the increase in PCE or CE that results from

increasing m. On the other hand, dividing Hd or Hp by m creates almost as large an

underestimate in some ranges of m. Dividing by m is definitely not the answer to the

problem, unless a further compensating correction is made.

We propose using the multipliers provided by Brogden (1959) to reflect the effect

the number of test composites and associated job families have on PCE. This multiplier is

referred to in the text as Mpm, with p standing for the percent rejected and m for the

number of jobs; The symbol Bm is used here to stand for MOm. We propose using these

multipliers on both PCE and CE estimates. The corrected Hp and Hd indices to be used for

comparing sets of composites of differing m would then be as follows:

Hdc = ((Hd)1/2/m)Bm , (3)

Hpc = ((Hp) 1 2/m)Bm , (4)

where Bm takes on the values from Brogden's table that shows: B 2 = 0.56; B 3 = 0.85;

B 4 = 1.03; B 5 = 1.16; B 6 = 1.27; B 7 = 1.35; B 8 = 1.42; B 9 = 1.49; B 1 0 = 1.54;

B1 1 = 1.59; B 12  1.63; B 13 = 1.67; B 14 = 1.70; B 15 = 1.73. Form greater than 15,

non-linear extrapolation should provide adequately accurate values for Bin. The ratio of

CE/ would then be computed as Hpc/Hd.

The value of m used in computing Hdc and Hpc will usually be different.

McLaughlin et al. based their value of H on the total number of jobs for which they had

validities (m = 98) while their alternative sets of composites were all less than the number
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in the current operational battery (m = 9). We would similarly base Hd on as many FLS

composites as the data will permit the computation of moderately stable FLS regression
0 weights. The use of m and Bm in conjunction with the square root of Hd appears to be

justified by the relationship between Hd and PCE indicated in Appendix 2G.

0
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APPENDIX 2F
COMPARISON OF BROGDEN'S CLASSIFICATION

EFFICIENCY MEASURE WITH
HORST'S DV INDEX, Hd

Brogden's 1959 model is based on a set of assumptions regarding the relationships

0 among and across predictor and criterion variables, relationships that can be depicted in

terms of Spearman's Two Factor theory. These assumptions are met if the factor matrix

F,, a matrix such that FFv' is equal to Cp, all elements of the first (general) factor are

equal to the product R(r) 1/2 and the remaining m (job specific) factors can be expressed as

0 a diagonal matrix with the diagonal elements equal to R(1 - r)1/2 . A three job example

would appear as follows:

R(r)l/2 R(1-r)l/2 0.0 0.0

Fv = R(r) 1/2  0.0 R(-r)l/2  0.0

R(r) 1/2  0.0 0.0 R(1-r)/

As described in Appendix 2A, r represents the common correlation coefficient

10 among the predictor composites (all FLS estimates), and R is the common multiple

correlation coefficient (the validity coefficient) of these predictor composites. Cp is the

matrix of covariances among the FLS estimates of job performance and thus would have all

diagonal elements equal to R 2 and all off-diagonal elements equal to (R2 )r. It is readily

seen that the matrix of correlation coefficients among the FLS estimates is equal to Sp 1/2

Cp Sp12, where Sp is a diagonal matrix whose diagonal elements are equal to the diagonal

elements of Cp. The diagonal elements of this correlation matrix are ones and the off-

diagonal elements are all equal to r.

0 Horst's Hd index is equal to the sum of the squared deviations from the column

means of each element of F,. Looking at F, as defined to fulfill Brogden's assumptions,

we see that the sum of squared deviations for the first column of F, is zero and is R(l - r)

for each of the other m columns. Thus Hd is equal to (m - 1) times R(l - r) when

* Brogden's assumptions are met. The same result is obtained if the Cp described above is
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entered into the formula: Hd= tr (Cp) - 1' Cp 1(1/m). Since PCE is defined by Brogden

as equal to M., times R(1 - r)1/2, we see that we need to take the square root of Hd, divide

by (m - 1), and multiply by Mpm (a value tabled by Brogden) to obtain PCE when

Brogden's assumptions are met.

0

2-76



CHAPTER 3. IMPROVING CLASSIFICATION
EFFECTIVENESS

A. HORST'S TEST SELECTION APPROACHES

There is no procedure that can make a set of weighted test composites of a fixed

batter' more effective for use as classification tools than the weighted composites optimized

for selection (i.e., the LSEs). For both objectives, the optimal weights to use are the least

squares weights and the maximally effective composite is a LSE. However, it is possible

to reduce potential classification efficiency (PCE) more than necessary in the process of

creating test composites that have fewer tests than contained in the operational test battery,

or in selecting weights for the tests in a composite that are other than the least squares

weights for predicting the criterion. There are useful techniques for minimizing the loss in

PCE in selecting test composites from an operational battery as well as procedures for
maximizing PCE of an operational battery selected from a larger experimental battery.

When a subset of tests is to be selected from a larger set of experimental tests for

use as an operational battery, a subset selected to maximize classification efficiency will
have more PCE/PAE than a set selected to maximize selection efficiency. Harris

(1967)through simulation showed that subsets selected to maximize Horst's index of

differential validity, Hd were superior to subsets selected to maximize Horst's index of
absolute validity, Ha -- the sum of the squared multiple correlation coefficients across the

jobs included in the test selection and assignment simulation. Harris' simulation
0 methodology and Horst's indices are detailed in Chapter 2.

Horst's differential and absolute techniques for providing test selection against
multiple criteria (Horst, 1954, 1955) can be compared to a common accretion approach in

sequentially selecting tests against a single criterion. A sequential method first selects the

0 test with the highest validity for inclusion in the battery; next, each of the remaining tests is
paired with the selected test and the pair yielding the highest multiple correlation coefficient

is considered "best" and retained, and then these two are matched with each of the

remaining tests and the "best" triad of tests that includes the first two selected tests is

retained. This process is continued until the desired number of tests is selected or no
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remaining test can make a practical contribution to the magnitude of the multiple correlation

coefficient.

Horst's "absolute" method differs from the usual approach that focuses on a single

criterion in that it utilizes as an index (Ha) the sum of the squared multiple correlation

coefficients across some specified number (m) of jobs. This index, Ha, is maximized at

each step. Similarly, Horst's "differential" method maximizes Hd at each step.

The extended factor matrix, F, described in the previous chapter as a Dwyer factor

extension matrix, is obtained by extending a complete factorization of the intercorrelations
among the predictor tests, R1, into the criterion space. Although by no means apparent

from Horst's presentation (1954), F is in effect constructed, column by column, by 0
Horst's test selection process. In this test selection procedure the implied F matrix is a

factor extension of a triangular factorization of Rt; it contrasts to the more general
representation of F as the Dwyer factor extension of any complete factorization of R t (with

ones in the diagonals). 14

The first column of F consists of the correlation coefficients of the i'h criterion

variable with the first test selected, that is, a column vector of values for ril. The second
column of F will be the semipartial correlation coefficients between each criterion variable
and the component of the next selected test that is uncorrelated (orthogonal to) the first

selected test, that is, a column vector of values for ri(2.1). The first test is selected because

its use maximizes either Ha or Hd, depending on which is to be used as the figure of merit.
Ha at that stage is measured as the sum of the squared values of rli, and Hd is measured as

m times the variance of each trial column vector, (ril). The variable to be designated as
"1" is, of course, designated as such only after every test in that role has been tried out.

Similarly, each of the remaining tests is tried out to see which one will maximize the

sums of its squares (Ha), or m times the variances of the semipartial correlation coefficients 0
(Hd), in the second column of F. As additional tests are selected, the ih row of F can be

depicted in terms of semipartial correlation coefficients as follows:

F = (ril , ri(2.1), ri(3.12), ri(4.123) , ...etc.)

14 Horst (1954) does not mention the triangular factorization of Rt nor the extension of this solution into
the criterion space. Instead he cites one of Dwyer's algorithms that is efficient for hand computations
but adds tde to the understanding of the process.

3-2



The sums of squares of the elements of each of these rows is obviously the squared

multiple correlation coefficient between the ith criterion variable and the LSE. It is less

obvious, but equally true, that the squared differences from the column means of F

summed for a row ir.dicates the contribution of a job to the total differential validity with

respect to its pairing with each of the other jobs.

We consistently use Ft as the factor matrix that reproduces R1, (i.e., Ft Ft' = Rt).

In our description of Horst's test selection procedure, Ft denotes a square root (triangular)

factor matrix. The rows in Ft have the same type of semipartial correlation coefficients as

the rows in F; the ith variable is a test instead of a LSE or a job criterion, and the sums of
squares of the row elements are unity instead of the squared multiple correlation

coefficients found in F. Each column of Ft, after the first, is the correlation of a test with a

component of the selected variable that is orthogonal to the variables represented by all

columns to the left. These column variables are assigned a variance of one and are

mutually orthogonal, and thus can be considered as factors. The column variables in F are

exactly the same variables, column by column, as the column variables of Ft.

The number of columns in F grows by one as each additional variable is selected.

At each stage in the test selection process, depending on whether Ha or Hd is being

maximized, one of the following relationships holds15 :

Ha = tr (FF') = tr (F'F) . (3.1 a)

Hd = tr (F-HF) (F-HF)' = tr (F-HF)' (F-HF) (3.1b)

* The F built up by either of the test selection processes, "absolute" or "differential,"
will have as many columns as there are selected tests. In either case, FF' = C, and

FFt' = V, where V is the validity matrix for the selected tests. It should be noted that the
particular F used in this test selection process is only an orthogonal rotation away from any

* other F that meets the more general definition mentioned above. Any orthogonal rotation

of a Dwyer factor extension of any complete factorization of Rt, that is, a Dwyer factor

extension of any alternative F1, fulfills the more general definition of F.

In Horst's test selection procedure this F is by implication directly created by
0 performing the same operations on V that are performed on Rt to create Ft as a triangular

matrix. A more general solution of F in terms of the validity matrix, V, and any Rt is as

follows: F = VFt'(Ft'Ft)-1 (Dwyer, 1937). This same Dwyer factor extension formula

15 See previous chapter for explanation of the matrix H and the operator tr.
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is, of course, applicable when Ft is a triangular factorization of Rt. Thus the indices Ha
and Hd as used in the test selection process still fall within the scope of the development

and discussion of Ha and Hd provided in the previous chapter. 0

Since a sequential selection of tests does not guarantee that the selected set of tests
provides the maximum possible value for Hd (or Ha ), it may be desirable to try out other

sets of tests to see if any alternative set would yield higher index values. For example, if

tests were chosen from a larger pool of tests, and only 9 tests are desired in the battery, it
would be reasonable to compute Hd or Ha for a test set in which the tenth selected test was

substituted for the 9th selected. Also it may be desirable to compare a test set selected by a
different process with one selected by the Horst sequential method. The Horst indexes can

be readily computed from any factor extension matrix F, or from any orthogonal rotation of

F (see Appendix 3C).

It was demonstrated in the previous chapter that the presence of hierarchical
classification effects could cause Hd to lose its proportionality to the square of PCE. 0

Adjusting the rows of F to make each job vector the same length should prevent the Hd
value from being affected by unequal validities. To incorporate this adjustment into the test

selection process, an adjustment is made on each semipartial correlation coefficient before it
is subtracted from the column mean and the difference squared. This adjustment can be

accomplished by the following formula to provide an index that can be used as the figure of

merit in the sequential test selection procedure:

Adjusted Hd = X Ym((a) R/R i - a. 2 (3.2)

The figure of merit used for the test selection process is the inner sum, the value for

2 22
one column; where = fn a.. , F = [a and (ai) =(R,)

Job samples on which data have been collected vary in size but, more important,

expected job quotas used in the future assignment process are far from equal. Similarly,

the MPP standard score, PCE, that results from making optimal assignments to fill quotas

over a period of time is influenced by the differential validity attached to jobs with the larger

quotas. The contribution of each row of F to Hd is due to the differential potential of the

comparisons of one job, the job represented by that row, with each of the other jobs. The

importance of each row is thus proportional to the expected quota of the associated job.

The formula for Hd weighted by the quota weight for the Ph job (Wi) is as follows:
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Weighted Hd, i LV (a ii-jj 2 (3.3)

The figure of merit used in the test selection process is the inner sum, the value for one

column.

B. THE COMPARISON OF HORST'S AND BROGDEN'S APPROACHES
TO TEST SELECTION FOR THE IMPROVEMENT OF
CLASSIFICATION EFFICIENCY

Rather than sequentially selecting tests from an experimental test pool for retention

in an operational battery, several authors have proposed methods for sequentially

eliminating the least effective tests. Horst and MacEwan (1960) have provided such a

sequential elimination process for arriving at a subset of tests that provide close to the

maximum value for Hd. The set selected by such a deletion type sequential test selection

process can be compared with a set selected by the accretion type sequential test selection

process described in the previous section. If the two sets identified by the two methods are

identical, one can safely assume that Hd is truly maximized; it is highly unlikely that there

is any other set with the same number of tests that yields a higher Hd. However, if the n

selected tests have k tests in each set that are not common to both sets, one could assume

that n-k tests, the overlapping ones, can be safely adopted, while all combinations of the

remaining 2k tests should be considered, in every combination of k tests, as possible

members of the set that truly maximizes Hd.

The Horst and MacEwan elimination method can be visualized as being equivalent

to, in terms of results, the procedure obtained by: (1) computing the matrix of covariances

among LSEs, that is, C = V(Rt)' V' , and then computing either Hd or Ha; (2) computing

C with each test removed, in turn, from the test pool (for n tests in the pool, n different C

matrices and a Hd or Ha for each C is computed); (3) identifying the test to be deleted by its

absence from the set used in the computation of the C yielding the largest Hd or Ha, and

permanently removing this test from the pool, and, finally, (4) repeating all steps until the

elimination of further tests would reduce the index by an unacceptable amount, or the

desired number of tests for the operational battery has been achieved.

An alternative approach for accomplishing the same results as the Horst and

MacEwan deletion procedure is one that is less computationally efficient, but highlights a

point of similarity with an approach propo- .,- by Brogden (Brogden 1964). In this

approach an F matrix is produced as the factor extension of a full triangular factorization of
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Rt and F is recomputed with each trial column in turn, placed in the last (right most)

position. The last column shows the contribution of a trial variable (being considered for

deletion) to the criteria when the effects of all other variables have been removed.

Eliminating the predictor variable whose semipartial correlation coefficients (when located

in the last column) have the smallest variance, is equivalent to the elimination of the test for

which the regression weights (in this case for orthogonal components) have the smallest

variance; each of these elements of F is a regression weight being applied to the test

component that is uncorrelated (orthogonal to) all other tests. The smallest variance may

result because the regression weights are either very small, or because they are similar to

each other across jobs. Intuitively, this particular test elimination procedure appears to

eliminate systematically the same tests as the method proposed by Brogden.

Brogden (1964) pointed out that the regression weights in LSEs can be directly

examined to identify tests that are making no contribution to classification efficiency. Such

a weight matrix could be designated as W and expressed in our notation as follows:

NN = Rt - 1 V'.

Noting that classification efficiency is not affected if constanis are added to the

columns of W, Brogden proposed that constants be judiciously added so as to, hopefully,

provide, for some test, a column array of regression weights with zero, or near zero,

values. A test with zero weights in all composites could obviously be dropped from the

battery. Such a process is directed at the deletion rather than the accretion of tests selected

to form a battery.

Once a test has been removed from the battery by the method just described, the W

matrix can be recomputed and column constants again judiciously added in search of

another test that can be deleted. This process could be repeated until no further candidates

for removal can be identified.

The Brogden deletion method would be useful for removing tests from some LSEs,

but not from others, in order to make test composites (aptitude areas) of more manageable

size, while at the same time minimizing the decrease of classification efficiency. Also this

approach could be used to eliminate negative weights in test composites based on LSEs
without reducing classification effectiveness.

It is clear that the addition of column constants to F, also a matrix of regression

weights for application against variables (factors) for the prediction of either the criteria or

the LSEs, has no effect on the magnitude of either PCE or Hd. Also, the columns of F can
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be adjusted by the addition of a constant to the weights of a given test component (or factor

in the more general case) across all rows of F to eliminate negative weights.

The use of a LSE associated with each job for use in the assignment process,
combined with a smaller set of test composites to be used first by a counselor/classifier,

and then recorded on the official record for later operational use, is a distinct practical

possibility. The recorded composite scores would be available for operational use,
(including by the examinee) to determine minimum eligibility for military programs or

training. The use of a small number of composite scores results in a high probability that

the prediction of success in a larger number of specific jobs would require weighting of the

* composites (the computing of LSEs, where the composites are the independent variables

and the job criteria are the dependent variables). Some weights in the composites may be

negative: there are motivational and administrative limitations on the visible use of negative

weights in producing scores resulting in important personnel decisions. Adding constants

to eliminate negative weights, without affecting classification efficiency, is one attractive

option. The practical use of providing a relatively small set of scores to the counselor

making classification decisions in the military setting is discussed further in a later section.

C. AN ALTERNATIVE ESTIMATOR OF CLASSIFICATION
EFFICIENCY; THE POINT DISTANCE INDEX (PDI)

In this section we propose the use of two alternative indices for use as figures of

merit to be maximized as tests are sequentially selected for inclusion in a test battery. Both

indices can be used to build a test battery by maximizing the efficiency of the LSEs used in

the selection/classification process to achieve two different goals: maximizing PSE when

only one composite is to be used; or maximizing PAE when using multiple composites for

assignment to jobs.

The first index described is superior to Ha for use in a selection process aimed at

maximizing PSE and is referred to as "Max-PSE." The second index is called the point

distance index, or PDI (Johnson,1970). We show that PDI is intuitively superior to Hd

for use in a test selection process directed at maximizing PAE. A rigorous proof of the

superiority of PDI over Hd most likely requires a model sampling experiment.

The Max-PSE index provides for maximizing the validity of the best single

composite that can be obtained from any specified battery. "Best" is used in terms of the

prediction of criterion scores in a combined sample that includes all the job samples. An

operational test battery selected from an experimental test pool to maximize Max-PSE
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would necessarily provide a PSE of equal or higher value than could be provided by the

use of Ha in such a process.

The comparison of Max-PSE and Ha is facilitated by the stipulation that means and

standard deviations be equal for all variables across the job samples. The multiple

correlation coefficients for the total sample (including all jobs) and for the first k tests to be

selected is, for each row of F, the square root of the summed squared values of the left

most k columns of F. The average of these multiple correlation coefficients between the k

tests and the criterion variable corresponding to the it row of F is, assuming our above

stipulation holds, the validity of the best single predictor. The LSE that provides this value

(Max-PSE) is the best composite for use in selection. The sum of squares of the same set

of multiple correlation coefficients provides the value for Ha. It is the value of Max-PSE

that should be used as the multiplier of the mean criterion score resulting from an optimal

selection process, in order to provide the product that is equal to a MPP standard score, and

thus provide a measure of PSE. ,

The formulae for Max-PSE and Ha can each be written in terms of elements of F,

where the elements F are defined as, F = (aik), with i identifying the LSE predicting the it

job criterion (corresponding to the ith row of F), and k stands for the kth test to be selected

(the kth column of F as built up in Horst's test selection procedure). Using this notation: &

(MAX-PSE)k 1/rn :7 [1xk (aij)21/2 (3.4))k= (3.4),

where Y. is the summation over i of the m rows of F, and , in this case, is thc sum of a
i J

function of the elements of the il row across k columns of F. (MAX-PSE)k is the figure

of merit to be used in the test selection process for the selection of the kth test. Using this

same notation Ha is equal to 1/m [:7 1 (aJ.)2)

In using the Max-PSE index as the figure of merit in a sequential test selection

procedure, the first test to be selected will be the one with the largest average validity.

Under our assumption of equal means and standard deviations across job samples, this test

has the largest validity in the total sample and is clearly the one which should be used in the

selection process, rather than the one with the largest squared validities as summed over the

job samples. At this stage, the theoretical superiority of Max-PSE over Ha is obvious. The
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second test to be selected is the one which provides, together with the first test selected, the

largest average multiple correlation coefficient.

Since the rationale for the definition and proposed use of Hd is based on

psychometric rather than utility considerations, Horst made no claim as to the relationship

of Hd to a benefit measure such as MPP. A direct relationship does exist under the

restrictive assumptions Brogden (1959) used for his model. However, there is no evidence

that this or any similar relationship holds for a set of jobs and LSEs for which the validities

are unequal across jobs. In the previous chapter we showed that Hd values are more

influenced by hierarchical classification effects than are MPP standard scores. This

potential bias in Hd could be controlled by the use of weights (i.e., (R IR, ) as described

earlier.

However, there is another potential source of bias in Hd for which such an

intuitively helpful adjustment is not available. A difference in the evenness of the coverage
of the joint predictor-criterion space affects Hd and MPP differently. Thus the more uneven

the coverage of this space, the less effective is Hd as a predictor of MPP (i.e., PCE or

PAE). We do not have the means of correcting Hd for this latter type of bias but will

propose an alternative index that will be more sensitive to the coverage of the joint

predictor-criterion space.

Consider a hypothetical set of jobs for which half have coordinates clustered at two

points in the opposite comers of the joint predictor-criterion space, and the other half are

scattered over the remaining space relatively close to the midpoint. We will compare this

first set with a second set of jobs that are scattered equally over all the regions of the joint

predictor-criterion space, but each set retaining the same sum of squared distances from the

midpoint. The two sets would thus both yield the same value for Hd but provide quite

different coverage of the space. Half the points in the first set lie on a single dimension,

and it is these points that contribute the most to the value of Hd. It is intuitively attractive to

believe that LSEs that are distributed more regularly over the joint predictor-criterion

hyperspace would provide more PCE than if half of them were located on a single

continuum stretching from comer to comer in that hyperspace. Jobs separated into two

major families on the basis of their location on a single continuum permit hierarchical

classification (but not allocation) effects, and Hd is increased disproportionately as

compared to MPP. If this intuitive logic is correct, it would be desirable to use an index
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impact of using PDI instead of Hd in the test selection process is best seen by comparing

formulae 3.5a and 3.5c.

In using the PDI as the figure of merit for sequential test selection, the probability

that tests will be selected other than those that would be selected by use of Hd increases as

the number of tests already selected increases. In general, PDI, as compared with Hd, will

favor the accretion of tests that augment the differential validity of the LSEs with the

smaller accumulated differential validities. These LSEs are those with smaller distances

from the midpoint in terms of the already selected tests and appear to need a greater

dimensionality to show a separation from the midpoint.

0 We intuitively feel that PDI is a better index for use in test selection than is Hd, but,

of course, recognize that either a theoretical proof or empirical evidence is required before

the substitution of PDI for Hd can be recommended without reservations. We have initiated

a model sampling periment to compare Hd and PDI as predictors of both PAE and PCE,
is using a simulation approach that reflects real world data. We are planning a further model

sampling experiment which will use hypothetical entities, predictors, and jobs designed to

emphasize the differences between the two indices.

As with Hd, PDI can also be adjusted to eliminate hierarchical classification effects. The

appropriate formula to eliminate these effects is as follows:

Adjusted PDI = 27 JXk lR i (a ij) (3.6)

The rationale for this adjustment is the same as for the similar adjustment made to

11d. A weighting to reflect quotas can also be made in the same manner as for Hd.

PDI lacks the easy computational formula in terms of the matrix C and the

convenient relationship to principal component (pc) type factor solutions that are provided

by Hd. However, PDI has a direct relationship to multidimensional scaling; the axis

produced in an initial multidimensional scaling solution can, like factor solutions, be rotated
to more meaningful positions and can be used to identify job clusters and composites. This
axis, as with the factors based on a maximization of Hd, can also be defined in terms of the

predictor variables represented by Rt.

In PDI we provide what we believe is an attractive alternative to the use of Hd in test

selection, an alterrative aimed at the improvement of the resulting battery's PCE. PDI is
proportional to PAE when the assumptions for Brogden's (1959) model are met. In
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contrast, the square of Hd is proportional to PAE under the same conditions. It seems

reasonable, although we have no definitive evidence as yet, that PDI is better related to

PCE than is Hd, when the Ri does not equal R. As noted, the rationale for PDI is, as yet,

currently intuitive, based on situational psychometric type evidence, rather than one based
on utility. Still, we would tentatively recommend its use as an alternative to Hd we expect

soon to have model sampling results (in terms of MPP standard scores) to either support or

refute this recommendation.

D. TEST SELECTION STRATEGIES

The most effective battery for operational use for both selection and classification
would include some tests selected by Hd or PDI and some tests selected by Ha or

MAX-PSE. The presence of tests included to improve PSE will almost always increase the

magnitude of the intercorrelations among job specific LSEs, but will not decrease the PCE
of the battery and sct of jobs for which these augmented LSEs are used.

Similarly, tests included to improve PCE cannot by their presence in the LSEs

decrease PSE associated with the use of a single LSE selected to maximize predictive
validity in the total job population. Neither will these tests that are best with respect to PCE

decrease the PUE of a simultaneous selection-classification process, such as can be
accomplished using the MDS algorithm. The inclusion of more tests will, of course,

always raise the validities of the LSEs; more often than not, relatively low intercorrelations
among the tests selected to improve PCE make these tests better than average prospects for

improving PSE, although they are not necessarily the ones that would be selected in a

sequential test selection procedure to maximize PSE.

It should not be necessary to include in a battery more than two or three tests

selected to maximize Ha or Max-PSE, nor more than seven or eight tests selected to
maximize Hd or PDI. If a smaller battery is to be administered to applicants for selection

purposes and a larger classification battery administered to those who are accepted, the tests

to be used for selection should first be removed from the experimental test pool and the

tests for inclusion in the classification battery selected from the residuals; the classification

tests should be selected using the residual relationships among the unselected experimental

tests and criteria remaining after the effects of the tests selected to maximize PSE have been

removed. Hopefully the test sco. zs administered for selection can be added to those scores

obtained for classification to form classification composites, since assignment of employees

frequently involves accomplishing both selection and classification objectives.
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If the test composites (e.g., aptitude areas) to be used as assignment variables are,

by official policy and/or tradition, standardized so as to have the same mean and standard
4P deviation for all composites, the test selection should reflect this intended usage. As

described in a previous section, the row sums of squares that are to be aggregated to form

Hd or PDI should be adjusted using (R/Ri) as a multiplier. The use of this adjustment will

hopefully prevent hierarchical classification effects from masking the PAE of tests being

considered for selection. Even when the assignment process has been designed to

capitalize on hierarchical classification efforts, as when the composites are LSEs with

standard deviations proportional to Ri, it may be desirable to select at least a few tests using

this adjustment. A model sampling experiment could determine the value of using this

adjustment in the test selection process; the question of whether the closer relationship to

PAE that is provided by this adjusted index will provide better utility when used in test

selection requires further investigation.

Weighting the rows of F by the size of the quotas for the jobs corresponding to

each row provides a means of emphasizing the comparisons that would be more numerous

in the operational assignment process. A battery selected by a procedure that takes quotas

into account should be used when the objective is to maximize the MPP standard score after

0 an optimal assignment process has been accomplished. For a counseling situation where

every comparison is considered to be equally important, it would be more appropriate to

select tests without using weights that reflect job quotas.

Horst (1956b) illustrated a procedure for maximizing Hd by assigning an optimal

proportion of a fixed amount of testing time, and corresponding test length, to each test in

an operational test battery. These proportions vary as the total battery testing time is

changed. Within the time range used in three illustrations, the assigned times became

increasingly different across tests, and the gain in differential validity increased, as the total

battery time limit increased.

Horst (1956b) provides an iterative algorithm for successively improving the

allocation of testing time (and test length) to increase the values of Hd. Horst's procedure

requires the availability of data on testing time, reliability, intercorrelations and validities for

all tests in a battery. Test length is assumed to have the same relationship to testing time

throughout the range of testing times. Thus, giver, testing time, length, and reliability in

one observed situation, test lengths and reliability are available for all other alternative time

limits. Validities and intercorrelations of predictors for tests of any prescribed set of

lengths are thus also functions of testing time and the validities and intercorrelations in the

3-13



observed situation. Trial testing times that sum to the prescribed battery testing time will,

in an iterative process, produce a value for Hd; the best set of testing times to maximize Hd

can be found by trial and error.

Horst's example in which he applied his algorithm used grade point averages for

ten college subjects as the criteria and six cognitive aptitude tests as the predictor battery.

The battery time limit for the observed situation was taken to be the sum of the time limits •

specified for the individual tests. In the first illustration the total time limits were halved.

The total time limit was allowed to remain unchanged in the second illustration in which the

total time (and length) was optimally allocated to the individual tests. The total time limit

used in the second illustration was doubled for the third illustration. 0

Optimizing testing time increased Hd by from 5 percent to 10 percent, with the

larger gain accruing in the illustration with the largest total testing time. For these optimal

testing times, the largest was ten times the size of the smallest, but none reduced to a time

that approximated the effect of deletion. 0

Horst noted that no provision was made for test administration time. If

administration time for each test had been added as a non-productive constant to the testing

time required for the productive items, only the latter would have related to reliability, and

thus to validities and intercorrelations among predictors. When the contribution of the item

component for a shortened time limit could no longer compensate for the fixed

administration time, test deletion would be indicated. Deletion would undoubtedly have

occurred in Horst's example if he had included the effects of administration time.

A study was initiated to develop a computer program to simulate the building of a

test battery from small increments of items (item blocks) from an experimental test pool

(Johnson, 1970). Test selection from a battery represented by one block of items from

each test was to be accomplished with the objective of sequentially maximizing Hd at each

step. What made this model different from standard sequential test selection procedures

discussed earlier was that the first time a block was selected for accretion to the battery, a

time charge for administrating the necessary directions was made against the allotted time.
Thereafter an equivalent block could be selected as many times as it added more to Hd than

would the accretion of a block containing a new type of item that carried an administration

time charge. The test selection process would halt when the desired total testing time, the

sum of all administration and item times reached the desired value.
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It was intended that selected batteries built block by block by the program would be

checked against Horst's (1956b) algorithm modified to reflect administration time

requirements. It was then intended that a model sampling experiment would be conducted

to compare the effects on both PSE and PCE of using batteries selected to maximize Ha and

Hd respectively. (Unfortunately, although the computer programming for this study was

essentially accomplished, the study was not completed.)

The job sample used to conduct a test selection procedure is crucial to the

development of a battery possessing high PCE. Jobs that span the joint predictor-criterion

space of the population of jobs should be selected for use in this procedure rather than the

* jobs with larger quotas, or those deemed to have the greatest criticality. Job samples must

be of adequate size :- establish accurate estimates of validities, frequently making it

desirable to under-represent large job families in order to over represent small job families.

The multidimensionality of the joint predictor-criterion space should be further

0 enhanced by using several relevant criterion components for each job and the weighting of

these components, as appropriate, accomplished differentially across jobs. The use of a

single criterion component such as job knowledge or performance ratings will increase the

probability that the criterion space across jobs is unidimensional, making it relatively

0 difficult for PCE to exist, except for hierarchical classification effects that can be captured

with a unidimensional predictor.

It is also essential to have an experimental test pool with heterogeneous content

representing a number of factor domains such as: cognitive, traditional psychomotor

abilities, video game skills, visual perception, performance under speed limits, and,

especially, biographical, interest and self description measures. The cognitive domain

should be represented by diverse content rather than by the relatively homogeneous

measures of general mental ability found in the existing ASVAB. A preliminary screening

of experimental tests to assure that only those with the highest predictive validity are

included in the experimental pool can greatly reduce the effectiveness of test selection

procedures intended to increase the PCE of the final battery.

* Biographical, interest, and self description tc!ts can be designed for differential

prediction across jobs, or conversely, for the measurement of general adjustment, work

related social skills, and motivation level. The latter generally predict supervisory ratings

across all jobs, making such predictors better con trbutors to PSE than to PCE. Empirical

keys for such tests are frequently highly correlated with general adjustment to the

organizational environment, a measure that cuts across job families. This "g" factor in the
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non-cognitive domain is probably as prevalent as general mental ability is in cognitive tests.

However, we believe it is easier to control "g" in the biographical, interest, and self

description domain as compared with the cognitive domain. Johnson, Klieger, and

Frankfeldt (1958a), and Johnson and Kotula (1958b) describe self-description tests

designed to provide differential validity for a limited set of Army jobs by minimizing the
"g" factor. Other techniques (e.g., forced choice items) to control an applicant's tendency

to select the responses perceived to be socially desirable could also be used to control the

non-cognitive "g" factor.

Between 1965 and 1975, information tests became very popular as a substitute for

biographical and self-description tests. It was believed that such tests were more

impervious to faking and more directly measured the positive consequences of interest and

experience. Unfortunately, these tests tend to be indistinguishable from general mental

ability in the joint predictor-criterion space. Thus, these "substitutes," while successful in

certain instances where selection was the primary goal, have contributed considerably to the

reduct'on of PCE in batteries, such as the ASVAB.

In summary, we believe the tools for selecting operational batteries with higher

PCE f om an experimental test pool should be used when more than one test composite is

to be formed from the battery. However, we believe formal test selection from an 0

exper mental test pool must be preceded by carefully considered selection of measures for

inclus'on in such a pool. When this preliminary selection is based entirely on

consi'erations of predictive validity, without thought of what might be needed to increase

PCE, ine should not expect significant gains in PCE, even when the further selection from 0

the e,.perimental pool maximizes PCE in the later test selection process. The formal test

selecion procedures cannot produce classification potential that was not placed in the

expe- mental pool in the initia research step. Even with a wise selection of an experimental

test p.ol, the test selection effort can be stalemated by the lack of an adequate criterion.

The careful consideration of job criterion measures to avoid a unidimensional criterion

spac, across jobs is also essential to a successful selection of a PCE rich battery.

E. FACTOR ANALYTIC TECHNIQUES

We begin by considering how to use a weighted test composite which maximizes

the value of Ha. Although a test composite which maximizes Max-PSE would have a

theoretical superiority over one designed to maximize Ha, the difference is probably quite

small. If policy specified the use of only one composite (one score per person to be
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classified), a close approximation to maximum performance is achieved by assigning the
highest scoring persons to the job having the highest correlation with this composite, and
so forth, just as with the single variable hierarchical classification model described in
Chapter 1. A test composite with weights selected to maximize Ha and used in this manner
would be almost optimal. Thus a composite which corrresponds to a factor in the joint
predictor-criterion space which maximizes H0 , and is precisely defined as a weighted
composite of the tests, closely approximates the characteristics desired in a single

composite to be used in the same way AGCT was used by the Army.

The first principal component (pc) factor obtained in the joint predictor-criterion
0 space will maximize factor contributions to Ha. We refer to this pc factor solution as Fa.

A pc factor solution of C, or a derived pc solution obtained as an orthogonal rotation of F,
provides the same result. The latter is obtained by factoring Rt to obtain F. and then

extending F, into the joint predictor-criterion space to obtain F a Dwyer factor extension
0 solution, which in turn can be orthogonally rotated to a pc solution in the joint predictor-

criterion space. Both methods sucessively maximize Ha as additional factors are added. In

either case C = FF' = FaFa' and V = FFt' = FaFt'. The pc solution derived from F has

the conceptual advantage of being more directly linked to Rt, making it easier to define

each factor in terms of the tests.

Fa can be directly derived from FA = Fa , and A can be obtained by reducing F'F
to a diagonal matrix of roots, (Da). A Grammian matrix such as F'F yields a unique
solution for the matrix equation A'(F'F)A = Da, where A'A = AA' = I. Thus an

0 algorithm for reducing F'F to a diagonal matrix yields precise values for A and Da. It is
easily seen that Fa, the principal component solution of C is equal to AD 112 . Also, since
Fa is a pc solution, Fa'Fa = Da, where Da is a diagonal matrix of successively maximized
values of each factor's contribution to Ha (they are, of course, also the eigen values or

0 roots of both F'F and C).

Factor scores for each individual pertaining to a factor for any orthogonal rotation

of either Ft or F can be precisely defined as a sum of weighted test scores. An individual's

factor score for the largest factor in the joint predictor-criterion space is defined as Z1. This

score is equal to the ith person's row vector of test scores (Y)i multiplied by the
corresponding column vector in a weighted matrix (W). More generally, the complete

factor score vector (Z)i is equal to (Y)iW, and W = (Rt-1 )FtA. To compute W without

using an inverse of R, (which may be very unstable for a large pool of tests), the following
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formula can be used: W = B(Db) - 1 /2 A, where Db is the diagonal matrix in the uniquely

defined equation B'RtB = Db, and B'B = BB' = I.

Another pc factor solution in the joint predictor-criterion space successively

maximizes Hd. This factor solution, Hd, can also be derived as an orthogonal rotation of

F; Fa is equal to FTo ; To'To = ToTo', and To'(F - HF)'(F - HF)To is equal to a

diagonal matrix of eigen values. As noted above, a unique solution for a matrix having the

above properties, To, is readily available. A derivation and further explanation of Fa, Fd,

and factor scores pertaining to both solutions, is provided in Appendix 3B.

The factor solution Fd has the same relationship to Hd as Fa has to Ha. Just as the

diagonal elements of (Fa'Fa) provide the successively maximized values of Ha contributed

by each factor, the diagonalized elements of (Fd'Fd) provide the successively maximized

values of Hd resulting from eacn factor.

Substituting Fd for F into the more general matrix formula for Hd, that is,

Hd = tr((F - HF)(F - HF)'), will yield tiie same value for Hd using Fa as would be

obtained using F, but in addition tr (Fd'Fd) and trace (Fd Fd') are both equal to the total

Hd since HFd is null (all column means of Fd are zero). While FdFd' = C, when no

factors are dropped, if only a few factors are to be used (say, one to four that have the

largest roots are to be retained), one can expect the approximation of C by FdFd'to be

relatively poor in contrast, a very close approximation is provided by the first few factors

of Fa; FaFa' = C. However, this better reproduction of C by Fa, as compared to Fd, is

not relevant to classification efficiency.

The most compelling reason in this age of computers for using a few test

composites, such as the nine aptitude area composites, instead of separate composites for

each of the 30 to 40 job clusters recognized by the Army, or separate LSEs for the 260

Army jobs, is to provide understandability and creditability of assignment decisions to

enlistees. Counselor recommendations and system decisions are frequently justified, or at

least explained, in terms of test scores. Also the management system needs to record

meaningful composite scores to determine an enlistee's eligibility on the basis of minimum

standards required for requested job assignments. Such scores are also required to

determine eligibility for various programs throughout his or her career.

Next we consider a hypothetical Army policy designed to meet the needs described

above. This policy stipulates that counselors will be provided only four test composites

rather than the undeniably more optimal thirty or so LSEs corresponding to currently
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existing major job clusters in the Army for use in accomplishing classification. These four

composites are also intended to aid the counselor/classifier in providing career advice to the
recruit. The first of our principal component factors of the type that will sequentially

maximize Hd, the sums of squares of each column of Fd as defined above, would provide

the best possible set of four composites for such a purpose.

The first (largest) factor of Fa could be implemented as a test composite and be used

by itself as an assignment tool, as suggested earlier. Similarly, the use of several, say k,

test components corresponding to the largest factors from Fd, would provide the best

classification efficiency obtainable from use of k test composite scores. Such composite

scores could be provided in profile form for counseling and as numbers for use in

regression equations to predict performance on each job.

For example, to amplify this classification concept further, we will assume it has

been decided to record only five test composite scores in the recruit's personnel file. These

40 scores are to be used by the counselor/classifier in negotiating assignments with the recruit,

and for later use in the determination of eligibility for various programs such as training

courses and reenlistment. One of the five components should be equivalent to the largest

(first) factor of Fa. The other four composites should be selected to maximize classification

0 efficiency. Since Hd is the best known index we have for reflecting PCE, and the largest

four factors from Fd maxmize the magnitude of Hd that can result from the use of any four

factors (or composites), the four classification composites can reasonably be made

equivalent to the four largest factors of Fd. Each of these composites representing a factor
0 is an LSE, with a factor for the dependent variable, the tests in the operational battery

providing the independent variables.

To expand on our example of how five component scores could be utilized, we will

describe an ideal situation for maximizing both creditability and PCE, and, consequently,

utility. Assume that twelve tests are selected from a larger experimental test pool of 30

tests; 9 are selected to maximize Hd, and three other tests are selected to maximize Ha. The

intercorrelations of these 12 tests then become the Rt in the above development. Ft is

computed and extended to the criterion space containing m jobs to yield the Dwyer factor

extension matrix, F. This m by 12 matrix F is then orthogonally rotated to Fa with only

the largest factor Fal and the corresponding eigen vector, Al being retained. Similarly the

residual of F defined as Fr, where Fr Fr ' = (C - FalFal'), is orthogonally rotated to

produce Fdr and the largest four factors of Fd, and the corresponding four columns of Adr,

retained for later use.
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The four factors in the m by 4 matrix Fdr should be orthogonally rotated to more

meaningful positions that correspond to simple structure with respect to the m jobs.

Rotation to simple structure provides a structure across jobs and factors such that either

high or low factor loadings are provided for most jobs in each job family. Using one of

several available computer programs can accomplish this objective. Alternatively, a desired

job structure could be reflected, as a hypothesis, in a surrogate F matrix, L, and used as a

target matrix for the fitting of FT to the target matrix L. A formula for a transformation

matrix, T, constrained to be orthogonal, that provides a least squares fit of FT to L is

given by Green (1952). It may be desirable to adjust the rotated version of Fdr further, that

is, (Fdr) T, to form moderately correlated factors that provide a better fit to major job

families.

A general factor score (for use in selection) and four differential factor scores (for

use in classification) would be computed by using each individual's 1 by 12 row vector of

12 test scores,(y)i, weighted by a W matrix to provide a 1 by 5 vector of factor scores,

(z), where (y)i W = (z)i. The least squares regression weights to be applied to the

differential factor scores, to provide a best estimate (i.e., a LSE) of the criterion for the ./

job, can be supplied for any orthogonal rotation of F as, Wf = (Rf)- 1 (Fdr)T, where T is

an orthogonal transformation matrix applied to obtain a more meaningful set of factors and
Rf is the 5 by 5 matrix of intercorrelations among the 5 factors. (Rf will be the identity

matrix if no oblique factor structure is introduced in the transformation of the axis to more

meaningful positions). These regression weights could be converted to test composite

profiles pertaining to each job. Profiles could be raised or lowered to reflect average job

quotas (Cardinet, 1959).

A greater amount of PCE would result, in the above example, if all tests were used

to compute the LSEs used inside the computer either to recommend or effect job

assignments. However, it is highly probable that the LSEs based on a general factor score

plus four differential factor scores would lose very little PCE as compared to the use of all

12 tests; a simulation study would be required to determine whether there would be a

significant loss in classification efficiency.

The general factor score would be needed to reflect accurately profile level and as

the basis for a minimum prerequisite (a cutting score) for entrance into highly technical

school courses. This score would also be appropriate for use in selecting applicants for

direct entry into the military for selected programs such as officer candidate school and

helicopter pilot school.
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There are other ways to make use of the Fa and Fd solutions described above.

The selected example was provided to show that there are feasible ways to consider

possible improvement of PCE in operational personnel systems, through the use of factor

based, classification efficient, test composites.

F. RESTRUCTURING JOB FAMILIES TO IMPROVE PCE

Job families are clusters of jobs in which each job can be presumed to be more

similar to members of the same cluster than to members of the other clusters. The selection

of a clustering procedure must consider both the measure of similarity and the process for

determining number of groups, group membership, and, sometimes, membership criteria

and group boundaries. If a means for addressing the latter two issues is provided, one has

not just a clustering process and results but also a fully developed jobs taxonomy.

Most clustering algorithms either start with the most similar pairs and combine

40 initial clusters and singlets into fewer and fewer clusters (leaf to stem) or start with the total

group and successively separate clusters into more but smaller clusters as the process

continues (stem to leaf). Multidimensional scaling and factor analysis provide a way of

separating the total set of jobs into regions separated by hyperplanes. Multidimensional
discriminant analysis provides another viable procedure for clustering jobs so as to assure

they are more similar within than between categories.

Kruskal (1977) writes that the key difference between: (1) clustering algorithms

that deal with similarity or proximity matrices and (2) multidimensional scaling, "is that

multidimensional scaling provides a spatial representation for the proximities, while

clustering provides a tree representation for them" (p. 29). Kruskal believes these two

approaches are complementary, rather than competitive, with the latter more efficient when

dissimilarities are small (as near group boundaries). Kruskal appears to be suggesting that

boundaries could be more efficiently identified using multidimensional scaling and the fine
tuning regarding the boundaries of families accomplished using a clustering algorithm.

Numerous books have been written on clustering methodology [Hartigan (1975),

Anderberg (1973), and Van Ryzin, ed. (1977)]. Numerical taxonomy is a related topic that
*0 is covered by another set of books including that of Sneath and Sokel (1973).

We are concerned with the clustering of jobs within the joint predictor-criterion

space. Thus the measure of similarity or proximity that should be used in either a

clustering algorithm or in alternative approaches (e.g., factor analysis), is the correlation

among LSEs, if the goal of the clustering is to make selection (using LSEs) more efficient.
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Alternatively, if the job clusters are intended to facilitate the classification process, the
measure of proximity should be either the differences among the pairs of LSEs or a
measure of the Cartesian distance among jobs represented as points in Euclidian space 0

(e.g., our PDI).

An excellent example of using the correlations among LSEs as the measure of

similarity for the clustering of jobs is provided by McLaughlin, et al.(1984). Their
clustering was accomplished several ways on two independent cross-samples and the
results compared. They concluded that the large cross-sample differences for their

clustering results precluded their recommending the use of specific sets of clusters (job
families) based on their empirical data. Because of the apparently low PCE of the ASVAB,

it is doubtful that clustering on a measure of classification efficiency would have been more
successful. However, clustering on rijRiRj (rij = correlation coefficient between ith and j th

LSE, and Ri = validity of ith LSE), might have produced a set of job clusters that would
facilitate the effectiveness of hierarchical classification; clusters more homogeneous with
respect to rijRiRj would provide some increase in PCE (due to hierarchical classification

effects), as well as improving PSE.

We believe the objective of clustering jobs into families for use with corresponding
test composites for classification purposes should be to maximize either Hd or PD1. We
describe a procedure for maximizing Hd but it would be easy to modify this approach to

make use of PDI instead of Hd.

One approach to clustering would call for using the distance measures, the Pij
values, as proximity measures and to select Pij sequentially, from smallest to largest of
value for pij, and agglutinating1 6 each pair of jobs that does not have a stronger connection
to another job. The proximity of an agglutinated pair of jobs to other jobs or pairs could
then be estimated as the average of the Pij that connects two of the evolving clusters. There
are many varieties of this approach available for use, several have been implemented in off-
the-shelf computer programs (some stem to leaf instead of leaf to stem). However, there is
no reason to believe that those approaches would even approximate a maximization of Hd in
the completed set of clusters. In contrast to such approaches we describe a clustering

16 The agglutination process is one of forming a new set which has a new meaning than that attached to
either of the constituent sets; this new set has its o-n different relationships to other sets; the basic
elements of the new set retains the separate identities of the basic sct elements (of jobs) but the
boundaries of the two constituent sets vanish in the agglutinated set. It is not accurate to describe
agglutination as either a process of joining or linking, and two pairs of jobs are not merged. Thus the 0
term "agglutination" was adopted.
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algorithm that will sequentially maximize Hd at each stage. Although relatively

cumbersome, such an algorithm is entirely feasible in this computer age.

A preliminary step in our clustering algorithm is to create a matrix of squared

differences among LSEs. This matrix, D, will have diagonal elements of zero and the

remaining elements equal to the squared differential correlation coefficients between the Ah

and jth jobs (LSEs). This m by m matrix can be expressed as D = [dij]. Horst's

differential index, Hd, can be directly computed from this matrix since Hd = (l'Dl)/2m =
(l2m) Y' 17 d.. . As clusters are formed these job families replace the individual jobs in

their relationship to the rows and columns of D. Our clustering objective is to agglutinate

jobs into families, reducing the order of D, while minimizing the reduction of Hd. To the

extent that Hd relates to PCE, a clustering procedure that maximizes Hd for a prescribed

number of clusters will also maximize the PCE for a given battery in a particular context of

jobs and criteria.

The matrix of correlation coefficients, Re, among the LSEs and the factor extension
matrix, F, is also required for the entire set of jobs on which the clustering process will be

performed. The matrices F and C are as defined in this and the previous chapter. Re, the

matrix of LSE intercorrelations, is equal to (S- 1 C S-I), where S2 is a diagonal matrix

comprised of the diagonal elements of the m by m matrix C, and FF' = C. The matrix D,

discussed above, is computed from the elements of F, an m by n matrix. Letting F = [aikl,

and D = [dij], with i and j representing the row variables of F (jobs) as well as the row and

column identifying an element of D, and k the column variables (factors) of F, we can

compute the elements of the m by m matrix D:

d = nk (ak - a-k) 2  (9.6)

The smallest dij will be selected at the beginning of each iteration. After the initial

iteration, this selection will be made on a diminished D that has an order one less than the

D of the previous iteration. At the end of each iteration Hd equals (I'D1). It is also

necessary to adjust F and Re during each iteration since an adjusted F is required to adjust

D, and an adjusted Re is required to adjust F. These three matrices as adjusted in the gth

iteration will be referred to as Dg, F.. and Rg.

The average intercorrelation among the individual jobs in an evolving family will be

stored in a column vector called Ug. In each iteration the pth and qth elements of Ug, Up

* and Uq, will be deleted and a new sth element added. The total number of jobs in each
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evolving job family, denoted as ni for the ith job or family, will also be stored. All ni have

the value of one as the first iteration is commenced; all elements of U,, can also be

appropriately initialized with values of unity.

Rpq is an np by nq matrix consisting of all the cells of Re tt.ac are correlation

coefficients between elements (jobs) comprising the two job criterion variables agglutinated

to form a new job family. Each coefficient, rpq, is the correlation between the LSEs

corresponding to the pth and qth job families. At first these coefficients are the same as

those in Re, since initially all families consist of one job, but as jobs are agglutinated to

form families of two or more jobs the new coefficients are computed using a correlation of

sums algorithm. However, the elements of Rpq remain a selected set of the elements of Re.

The first iterative step of the algorithm is to select the smaliest numerical value of dij
and to agglutinate the two corresponding jobs, or job families. At the start of the first

iteration the rows ind rolurmns of D will all correspond to jobs, but in later iterations one or

both rows and columns corresponding to a dij may represent evolving job families. When

the smallest dij is identified, the row (i.e., the specific value of i) '. aegnated asp and the

column (i.e., the specific value of j) is designated as q. If the qth job fan,;ly contains np

jobs and the qth job family contains nq jobs, Rpq, as described above, is an np "y nq matrix

and there is a product mcment coefficieni, rpq, corresponding to the selected dij. 0

The (np + nq) by nj matrix, also consisting of cells from Re, is denoted as Rj. This

matrix, Rj, consists of the correlation coefficiemntS between each member of the set of p + q

job criteria and each member of the jth job family. There will be a separate Rj for each of
the (m - g) criterion '-.Lables remaining aftcr the two criterion variables associated with the

dj se.cted in step one of each iteration.

The following steps in each iteration provide for the elimination of the two rows in

Fg and the row and column in Rg and Dg associated with the last selected dij. This is

followed by the computation of a new row of Dg, Fg, and Rg and the corresponding

column for Dg and Rg. Only one element of Ug, or.c row of Fg, and one row and

corresponding column of Dg and Rg is recomputed during each iteration.

The iterative steps for this algorithm are as follows:

(1) Select smallest non-diagonal dij and identify the corresponding pth and qth

rows of Fg and both the pth row and qO column of Dg and Rg.

(2) Compute a new sth row and column of R, to replace the pth row and qth

-oumn, both of which will be deleted from Rg; s is equal to m - g. This new
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A row consists of correlation of sums coefficients between the sum of all job
criterion scores comprising the pth and qth job families, and each of the
remaining variables corresponding to the rows of Rg (i.e., all variables except
p and q). rsj = r(p+g)j = (I'Rj 1)/((Lp 2 + Lq2 + rpq Lp Lq) 1/2 Lj); Li = (ni +

ni(ni - 1)ui) 1/2 . Rg+I is created by deleting the pth row and qth column of Rg
and then bordering this matrix with the row vector (rsj) and the column vector
(rsj) = (ris)'.

(3) Compute a new A row of Fg to replace the pth and qth rows of Fg and border
Fg with the row vector (asj); the jth element of the sth row vector (asj) equals

(apj Lp + aqj Lg)/(Lp2 + Lq2 + rpq Lp Lq)1 /2

The term rpq is equal to (l'Rpq l)/(Lp Lq). This new matrix, Fg with the pth

and qth rows deleted and Fg then bordered by the vector (asj), is denoted as
Fg+1.

(4) Delete Up and Uq, and add a Us element to the vector Ug.

SUs = [Lp2  Lq2 -np - nq + 2 (l'Rpq 1)]/[(np+nq)2 -np-nql

(5) Compute new stt row and column for Dg; Using Fgl, dsj = XiS(asj - aij) 2 .
Delete pth row and qth column of Dg and border this resulting matrix with the
row vector (dsj) and the column vector (dis) = (dsj)'.

* (6) Compute Hd = (1' Dg 1)/2(m - g), for the gth iteration and compare with the
values of this index obtained in step 6 of the previous iteration; consider the
number of job clusters (m), and trend in values of Hd to decide whether to stop
or to start another iteration (steps 1 through 7).

* (7) Prepare to commence the next iteration by adding one to g. This updating is
accomplished as follows: (a) the RgI computed in step 2 is now Rg; (b) the
Fg+i computed in step 3 is now Fg; (c) the Ug+l computed in step 4 is now
Ug; (d) the Dg~l computed in step 5 is now Dg.

At the conclusion of the clustering process most analysts will wish to recompute V

and C. The F matrix for the final set of job families is the last adjusted Fg Fg Ft'= Vg,

and Fg Fg' Cg. If the empirically determined job families are to be used operationally, a

test selection process in which Vg is substituted for V should be accomplished.

* If the jobs (LSEs) were graphically plotted on two-dimensional projections from the

joint predictor-criterion space, we would expect half or more of these points to be as close

to the hyperplanes separating families as to the centroid of the family. We have no reason

to believe that jobs will, in general, cluster in this space more densely near the centroids

* than near the boundaries of traditional job families. We can, of course, capitalize on chance
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and locate our separating hyperplanes through less dense regions, but must expect most of

the benefits of such fitting to disappear in independent cross-samples.

Any structure devised to cluster over one hundred jobs i,1tO less than a dozen

families will necessarily include jobs in a family that are much more similar to certain jobs

in other families than they are to the more representative jobs in their own job family. Oniy

the core jobs can be expected to yield good results when classification reliability is assessed

using independent cross-samples. Thus, one must not expect a great deal of reliability for

clustering results in cross-sample comparisons unless jobs close to boundaries are

weighted less, and/or misclassifications of such jobs to job families with proximal

boundaries are weighted less than disagreements as to the classification of the core jobs of q

each family.

Both the dimensionality of the joint predictor-criterion space and the relationships

among jobs in this space can be exrlored using the factor approaches discussed in the last

section. If it is desired to view the relationships among jobs in the smallest possible

number of dimensions, the pc solution of C (referred to as Fa in the previous section)

should be used. If a solution in terms of factors which have relevance to PCE is desired,

Fd should be used. The rotation of Fd to simple structure would aid in the identification of

major job families that can be appropriately utilized in the classification process; each

rotated factor can be defined as a test composite (a LSE, based on all tests in the battery, in

which the dependent variable is the rotated factor).

The rotation of a pc type factor solution to aid in the classification of n jobs into

families can be accomplished by using a target factor structure that represents either a

hypothesis or the results of a clustering procedure. As described in the previous section,

the pc type solution, itself an orthogonal rotation from the factor extension matrix, F, can

be orthogonally rotated to provide a least squares fit to the target matrix (Green, 1952).

Boundaries between job families can then be located graphically and other data considered

in the classifying of jobs located near these boundaries.

One appropriate hypothesis for reflection in a target matrix could be obtained

through the use of a clustering approaach to identify the core jobs of major families. The

least squares fit to a target matrix could then be accomplished using only these core jobs to

define the target matrix. The orthogonal transformation matrix obtained from

accomplishing this fit could then be applied to the remaining rows of Fd and the graphical

consideration of family boundaries accomplished. However, this orthogonal rotation of Fd

could be first "fine-tuned" by hand rotations to improve simple structure. Other hypotheses

3-26



could be formed and implemented in a target matrix from consideration of existing officially

imposed clusters of jobs or the structure implied by the location of job relevant school

courses in the same school or school department.

There is no real problem in having a target factor structure that exceeds the

dimensionality of the joint precictor-criterion space. For example, the points actually

located on a plane can be assigned coordinates in a three-dimensional (or higher) space by

tilting the plane so at least some of the points will have non-zero coordinate values on all
axes. This tilting of a space within a larger space permits a greater flexibility in locating

axes through swarms at points to increase the quality of simple structure. Since each of

these axes can be defined as a test composite and used in a personnel assignment process,

the use of the additional axes can improve PCE.

Although it has been proposed by Sokel (1977) that factor analysis and/or

multidimensional scaling methods be used to identify major proximity differences, and

*0 clustering be used to measure smaller differences, we propose using clustering to help form

hypotheses and the spatial methodologies to locate boundaries. The latter methodology is

more amenable to the consideration of other data and policy constraints than the more

numerical clustering approach. Also, it is desirable to have the final job classification

process result in a factor solution, since these factors can be precisely duplicated by a

regression equation of predictors usable as the test composites in the assignment process.

The increase in PCE that can be obtained by increasing the number of job families

must not be confused with the number of jobs in Brogden's model (1959). In the latter,

each additional job is assumed to be accompanied by an additional dimension in the joint
predictor-criterion space. The improvement of PCE through the increasing of the number

of job families does not depend on this assumption. Adding other jobs that are distributed

throughout the same space, with the same density, and same average distance from the
0 midpoint as the existing jobs, while retaining the same number of families, will not

improve PCE. In contrast, increasing the number of job families and corresponding

composites increases PCE all the way to the maximum number, where the number of jobs

equals the number of families.

G. SUMMARY AND CONCLUSIONS

The primary object of tt:s chapter is to show how to depart from the ideal process

for realizing classification efficiency while minimizing loss of PCE. The ideal process

requires the use of a separate LSE as the assignment variable for each job, and the use of all
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predictors (i.e., with no test selection) to compute each LSE; there is no job clustering and

no use of test composites other than LSEs in the ideal process for maximizing PCE. Thus

selecting a subset of predictors for use in a classification test battery, the reduction in the

number of jobs or job families (a result of clustering), and the definition of test composites

other than LSEs for use as assignment variables all represent departures from the ideal.

The addition or deletion of tests, or jobs in a job family, as one step in the

development of a classification system, should be based on the maximization of a figure of

merit directly related to PCE; PCE will not be maximized by test selection or job clustering

that seeks to maximize predictive validity. To improve PCE, decisions concerning the

content of the: (1) experimental test pool, (2) operational battery, or (3) test composites

used in the assignment process, must be made with improvement of PCE specifically in

mind; PCE can be expected to be reduced as a consequence of actions taken to improve

PSE when these actions are departures from the ideal process that is optimal for both

selection and classification. 4

Departures from the ideal selection and classification process may be required to

keep testing time within practical bounds and to provide a practical number of test

composites, and corresponding job families for use by recruiters and counselors in the

initial acquisition and assignment process. A smaller number of composites (with matching

job families), as compared to the ideal number, may also be required by administrative

restrictions or from lack of adequate validity data that together prevent the use of the ideal

process. There are also other requirements for a smaller number of test composites related

to relatively homogeneous job families, including the need for such convenient predictive

scores in establishing minimum prercqiI;ites for entry into programs occurring later in a

soldier's (or worker's) career. Thus techniques for maximizing PCE in test selection, test

composite identification, and clustering jobs into families are valuable tools, albeit they are

describing a "best" way for departing from the ideal process.

Horst developed iest selection procedures that consider criterion measures for

multiple jobs: two maximize absolute validity, Ha, to improve the PSE of the selected

battery (Horst, 1955, 1956b); two others maximize differential validity, Hd. Of the latter,

one uses an accretion1 7 algorithm (Horst, 1966) and a second uses a deletion algorithm

(Horst, 1960).

17 The sequential addition of tests to a battery is consistently referred to in the psychometric literature as
the "accretion process."
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A much greater potential contribution to utility than obtainable from test selection

alone can be provided by selection of an optimal administration time, and, by inference, test

length or number of item, for each test in a battery or experimental test pool. This

technique permits the tailoring of tests to provide a near maximum classification efficiency

within the total time limits allotted to the administration of an operational battery. To this
end Horst provided an algorthnm to rnaxinilz! Hd (HI-r, 1966) and another to -na,.irize

Ha (Horst, 1956c). We provide an approach for adding the consideration of administration
time, permitting the reconstitution of tests to form a battery, while maximizing Hd in

accordance with Horst's algorithm.

We suggest the point distance index (PDI) as an alternate figure of meit to be
maximized in selecting tests because we believe there is a closer relationship between PDI

and PCE than between Hd and PCE under the most commonly occurring conditions (i.e.,
when the assumptions of Brogden's (1959) model have not been met). Hd is proportional

to the square of PAE, and PDI is proportional to PAE itself when these assumptions do

hold.

The clustering of jobs into families is to take a big step away from the ideal process,
primarily because each test composite (hopefully an LSE) used as the assignment variable

for all jobs in a family does not approach the accuracy with which each job in the family is
represented by its own LSE. However, the personnel system requires test composites for:

(1) counseling, (2) setting visible minimum prerequisites for training courses, and (3) both

controlling reassignments at later career decision points and providing job incumbents with
career relevant information. Rather than focusing on job clustering, one should concentrate

on the matching of jobs to test composites so as to maximize Hd, Ha or alternative indices.

To this end we describe factor solutions that maximize Ha for any given number of factors
and another solution which similarly maximizes Hd. These factors can be rotated to
provide a match between factors and jobs, and then precisely defined in terms of the

predictor tests.

The value of the methods suggested for obtaining (unfortunately, the verb gleaning
is frequently more descriptive of what is required) the available PCE from an experimental

test pool, in the context of a special set of jobs and criterion measures, depends on the skill
of the researcher in developing predictor and criterion variables to be used in creating the

experimental data. The validity generalization movement has provided a great service in
pointing out the difficulty of obtaining PCE. However, it is inappropriate to suggest that

the joint predictor-criterion space is inherently unidimensional in nature until a concerted,
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technically correct, effort is expended 18 with the goal of maximizing PCE in both the

development and selection of measures for inclusion in the experimental pool. Batteries

developed to maximize PSE and validated against limited unidimensional job criteria are not

the appropriate reference points concerning the feasibility of an effective allocation process.

We believe that there is a strong potential for thc identification of several additional

dimensions in the joint predictor-criterion space whose existence can be confirmed with the

concern and care used by Hunter (1986) with respect to the existence of general mental

ability, clerical speed, and psychomotor ability in the joint GATB-criterion space.

The predictor space should never be substituted for the joint predictor-criterion

space in the determination of composites or job families to be used for classification.

Equally important, an index closely related to PCE, rather than to PSE, should be used to

make these determinations.

In this chapter, approximately half of the recommended methodologies for

increasing PCE were developed by Horst. The remainder, including Max-PSE, PDI, the

particular applications of factor analytic approaches, and job clustering to maximize Hd,

appear here in this chapter for the first time. We hope that with more techniques and with

the linking of Horst's and Brogden's contributions, more investigators will make a

deliberate effort to improve the PCE of a battery that is to be used to accomplish S

classification.

The maximum PCE for a battery is obtained when separate LSEs, each based on the

full number of available tests (e.g., the experimental test pool), are provided for each job.

The reduction of tests for an operational battery, the use of a smaller set of composites, or

the merging of jobs into families all represent departures from the ideal. These departures

should be made so as to minimize the loss of PCE as compared to the ideal process. This

can be accomplished by selecting tests, and either using a separate LSE for each job or

selecting composites and jobs for inclusion in families, using procedures that consider the

effect on PCE as tests are selected, composites formed, and jobs or evolving job clusters

are merged into job families used in the classification process.

18 Most would agree that one should always make a heroic effort to find a difference before accepting the
null hypotheses and a super-heroic ef 1ort before concluding that the null hypothesis has been proven.
Concluding that there is only one relevant dimension, general mental ability, is at least equivalent to
az.cepung a null hypothesis, and in the eyes of some, equivalent to concluding that the null hypothesis S
has been proven.
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The accomplishment of accretion or deletion of tests or jobs should be based on a

figure of merit directly related to PCE; PCE will not be optimized by test selection or job
* clustering that seeks to maximize predictive validity. To improve PCE, one must make

decisions in the test/battery/composite development process designed to improve PCE

rather than aiming at an improvement of PSE and hoping that PCE will be improved as a

side effect.

Horst has provided a number of test selection procedures that simultaneously

consider multiple criteria (one for each job). Two of these maximize absolute validity, Ha,

and are most useful in the improvement of the PSE of a battery (1955, 1956c). One
provides an accretion process (1966), and another a deletion process (1960) for test

selection to maximize differential validity (Hd). The time and length for each of a set of

tests already selected for inclusion in a battery is considered in one algorithm to maximize

Hd (1966), and another algorithm (1956c) to maximize Ha. We have provided the point

distance index (PDI) as an alternative figure of merit to be maximized in selecting tests or

designation of testing times. We believe PDI is more closely related to PCE than is Hd
when the assumptions of Brogden's (1959) model have not been met.

The clustering of jobs into families may require a decision as to the relative
* priorities of maximizing PSE and PCE. A different structure could result from the

agglutinating of jobs with high correlations among LSEs (to maximize PSE) as compared

to the agglutinating of jobs with small differences between LSEs (to maximize PCE). All
competition between the two objectives disappear as families become so small that every

* job is represented by its own LSE.

While we can eliminate the need for clustering jobs into families in the assignment

process by using the full regression equations as the assignment variables, the personnel

process will still require test composites for counseling, the setting of visible minimum
41 prerequisites for school courses, and controlling entry into MOSs and special programs.

The effective use of these test composites may require the identificaticn of job families for

which one or more of the test composites have special relevance. We have described factor

solutions, one which maximizes Ha for a given number of factors and another which
* similarly maximizes Hd. These solutions can be rotated to provide factors with meaningful

relationships to jobs and/or job families, and then completely defined in terms of the

predictor tests.

We recognize that ultimately the value of the methods provided above for gleaning

the available PCE from an experimental test pool, in the context of a special set of jobs and
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criterion measures, depends on the sk'll of the research psychologist in the creating of

predictor and criterion variables. The validity generalization movement has provided a

great service in pointing out the difficulty of this task. However, no one can legitimately

say that the joint predictor-criterion space is inherently unidimensional in nature until heroic

efforts have been made, both in the development of measures and in paying deliberate

attention to PCE in making decisions about batteries, composites, job families, and the

selection/asssignment process. It would not be good science to examine batteries

developed to maximize PSE, and validated against limited unidimensional job criteria, to

reach conclusions concerning the feasibility of classification.

It is also not true to the scientific method to attend only to the predictor space in the

determination of composites to be used for classification. Nor does it aid the classification

process to cluster jobs (or treatment categories) in any domain other than the joint predictor-

criterion space. Hunter (1986), using data that relies primarily on the ratings of

supervisors, has concluded that the GATB contributes to three dimensions in this space.

We believe that there is potential for more than these three, but their existence and

usefulness should, at least eventually, be established with the concern and carefulness used

by Hunter to confirm the existence of general mental ability, clerical speed, and

psychomotor ability in the joint GATB/criterion space. We believe the methodology

provided in this publication, including the model sampling techniques described in the

following chapter, should be helpful to the research that needs to be accomplished on both

the potential and the existing operational utility of classification.
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APPENDIX 3A

ELIMINATING TESTS FROM COMPOSITES,

AND/OR TESTS FROM BATTERIES,

WHILE MINIMIZING LOSS OF CE

Brogden (1964) described an approach for the elimination of predictor variables

whose additional contribution to classification efficiency (CE), beyond that provided by the

retained variables, is zero or negligible. He was concerned with the elimination of

variables from the FLS composites associated with each job family, rather than in the

selection of tests for inclusion in an operational battery. However, the two concepts are

similar in that tests eliminated for all composites would also be thus identified as not needed

in the battery.

In the approach described by Brogden, regression weights for FLS composites

make up one row of the matrix W; the columns of W represent predictor variables and the

rows correspond to jobs. Brogden pointed out that classification efficiency is unaffected

by the addition or subtraction of constants to a column of W. The addition of a constant

which reduces all the weights for a predictor, i.e., for one column, to zero has the effect of

eliminating that variable from all composites (and thus from the battery).

We would not expect all elements in a column of W to be reduced to zero in an

analysis of empirical data. Some degree of closeness to zero would be established as either

equivalent to zero or too small to make more than a trivial contribution. Closeness to zero

could be measured using various metrics and criteria for making the decision. The average

absolute distance from the column mean, the standard deviation, or the range of column

values could be proposed as candidate metrics.

While Brogden did not propose a metric to be used in measuring how close to zero

columns of W can be reduced, and he certainly did not suggest that the columns of W

could be rank ordered with respect to their closeness to zero after the optimal selection of

column constants, his basic concept can be related to Horst's and MacEwan's elimination

method of selecting tests (1960). We can see this similarity by noting that W can be

depicted as a triangular factorization of Rt (i.e., Ft) extended to V to obtain F,, in our
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notation, and this Fv equated to W. If each predictor variable is depicted, in turn, as the
last column of Fv and the standard deviations of each variable while in last place
compared, thL elimination of the variable with the smallest standard deviation would 0
provide the same result as using the algorithm proposed by Horst.

Thus we see that if we start with Brogden's concept and apply Horst's metric (the

squared standard deviation of the elements of a column), and adopt Horst's concept of
looking for the variable making the smallest contribution (contrasted with Brogden's search

for a variable making no contribution), we have com,.eptually arrived at Horst's elimination
method. It is easy to see that identifying the variable for which the standard deviation of
the regression weights applied to the component of a variable orthogonal to all other
variables will also identify the variable whose elimination will minimize the reduction of

Hd.

The algebraically equivalent solution to that obtained by computing rn separate

triangular Fv solutions, each solution placing a different test variable in last place, is more

economically obtained by using Horst's formula:

Hd = tr Cp - (1' Cp 1)/m. The equivalent of identifying the variable with the

smallest regression weights after minimizing these weights by subtracting the appropriate
constant (i.e., the mean value), is obtained by retaining the variables defining Cp which
provide the largest values of Hd defined as a function of Cp.

The selection of tests for inclusion in test composites smaller th i FLS composites

requires a different strategy for the selection of tests than is appropriate 'or the selection of
an operational battery. Tests removed from one composite can remain in other composites.
Thus, Brogden's objective in his 1964 article relates to the classification efficiency of

operational composites as contrasted with the potential classification efficiency of an

operational battery, the goal of Horst's DV approach.

Just as Brogden (1964) did not directly offer a means for selecting an operational
battery from an experimental test pool, Horst did not publish a method for eliminating the
less productive, least classification efficient, tests from some FLS composites but not from
others. We suggest that the identification of tests which could be appropriately left out of
FLS composites could be accomplished as a byproduct of an accretion method for selecting
tests to maximize Hd. As each successive test is selected, any job whose validity is equal to

the mean value of the just computed column of F, can have that test (the test corresponding
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to the just computed column) eliminated from the con', osite for that job without

appreciably reducing the value for Hd (or Hp).

3-35



APPENDIX 3B
A FACTOR SOLUTION FOR MAXIMIZING Hd

In this appendix we provide a development of two factor solutions in joint

predictor-criterion space comparable to a PC solution of Rt, except that Ha and Hd are

respectively maximized instead of the maximization of factor contributions in test space. A

PC solution of Cp provides factors for which the factor contributions are successively

maximized considering only the criterion (job) variables as the dependent variables and the

predicted performance, in terms of the test variables, as the independent variables.

For a PC solution of Cp, the covariances among predicted performance estimates,

the following relationships hold: FcFc' = C p, Fc'Fc = Dc, where Dc is a diagonal matrix

of eigen values from the equation Ac'CpAc = Dc, and both AcAc' and Ac'Ac equal the

identity matrix. The sum of the diagonal elements of Dc are equal to Horst's absolute

validity index, Ha. Conventionally, these eigen values which equal the contribution of each

factor to Ha are listed in order of magnitude, from left to right, and the contribution of k

factors to Ha is maximized for k factors by selecting the first k factors on the left.

An investigator can maximize Ha for k factors by directly computing Fc as AcDc i / ,

and then selecting the k factors with the largest factor contributions, or by converting F, to

Fp (Fp = Fc) using Fp = FAp , where Ap'(Fv'Fv)Ap = Dp, and selecting the k factors

havi.ig the largest factor contributions. Before pruning to k factors, Fc will have m

columns (i.e., factors) while F, will have as many factors as there are tests (i.e., n).

However, the non-zero columns of Fp will equal Fc regardless of whether n > n, m > n,

or n = m.

As discussed in Appendix 2B, various transformation matrices T can be used to

transform both Rt and V to factor solutions that provide the same factors for both Ft and

Fv. That is,

.] T= [:.

V
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We can commence with Fc and extend this solution to Ft. This factor extension process

can be expressed as

with T2 = TIAp = AtDt-l /2 Ap, and using F, = VAtDt- 1/2

Ad'(F'Fv)Ad = Dc.

The investigator can choose other solutions for Fv, thus changing the above formula for 0
T 2 . We chose to use the expression: T1 = AtDt- 1 /2 . Factor scores corresponding to the

factors represented by the columns of Fc constitute the elements of Qc, a matrix that can be

computed by the formula Qc = Y Rt-Ftc.

The equality of Fc = FvAp, as used above, follows from the well known theorem 0

that for a positive semi-definite matrix M, the equation Am'M Am = Dm is uniquely

defined in that there is only one orthogonal (or orthonormal) matrix, Am, and only one

cdiagonal matrix, Dm, that can fulfill this equation. Further, a factor matrix, F, defined as

F = FAp must be a PC solution if F'F equals a diagonal matrix, FF' = Cp, and Cp is 0

positive semi-definite. It is evident that FvAp is a PC solution of Cp and must be equal to

Fc, Thus, an investigator has the choice of directly factoring C p to obtain

F c (F c = ACDC1/2 where Cp = AcDcAc'), or can extend Ft to V and obtain Fv, a factor

solution that can be transformed to Fp, using the relationship, Fp = FvAp; Fp = Fc.

Horst's differential validity index, Hd, has the same relationship to the matrix,

G = (Fv - HFv), as Ha has to Fv. We note that tr (Fv'Fv) = tr (FvFv') = Ha, and

tr(G'G) = tr(GG') = Hd. We further note that all orthogonal rotations of Fv will yield the

same numerical value for Ha.

Similarly, all orthogonal rotations of G yield the same numerical value for Hd.

Thus, if we obtain the roots and vectors of (G'G) and write the equation Ag'(G'G)Ag =

Dg9 the trace of Dg will still be equal to Hd. We could have also arrived at this conclusion

by noting that the trace of a positive semi-definite matrix such as G'G is invariant under

orthogonal rotation. and tr Dg is equal to Hd.

Since the elements of Dg can be successively maximized and associated with a

specific column of a new G based on Fv Ag one can select columns of G Ag that can
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maximize the magnitude of Hd provided by a given number of columns of G. The

selection of the k columns of G corresponding to the k largest elements of Dg is equivalent

to selecting the k factors in FvAg that yield the largest value for Hd.

The factor solution Fd = FvAg will provide a successive column by column

maximization of HId, and when the number of columns (factors) is equal to the number of

criterion variables, m, FdFd' = Cp. If we wish to retain k orthogonal factors, k < m, that

maximize Hd, we need only select the k columns (factors) of Fd corresponding to the k

largest eigen values of G.'G. When k < m the reproduced matrix FdFd' becomes an

approximation of Cp, a much poorer approximation than is provided by the best k factors

of FcFc'. However, the k factors of Fd that provide the largest factor contributions can

provide more PCE than can the factors of Fc that provide the largest factor contributions.

We would expect the k largest factors of Fc to provide more PSE than the k largest factors

of Fd.

When Fd and Fc are both m by m matrices, the values for Hd and Ha are equal
regardless of which of these two solutions is utilized. However, when the k < m factors

corresponding to the k largest eigen values of Dc or Dg are selected for further use, Hd is

larger for Fd and Ha is larger for Fc. Hd can be formulated as Ha - (1'C1)/m. The term

*1 subtracted from Ha, (l'C1)/m, is easily shown to be equal to m times the sum of the

squared column means of Fd, since 1'C 1 = 1'Fd (1'Fd)'. We see that the single factor

with the largest contribution to Hd is one which has a comparatively large value for Ha, but

also has a smaller mean factor loading (coefficient) than is found in the largest PC factor in

* the joint predictor-criterion space, the factor which maximizes Ha.

We now outline how to create classification efficient composites corresponding to

factors for use in conjunction with an equal or larger number of job families. We suspect

that the dimensionality of the joint predictor-criterion space for selection/classification
41 systems of the the military services can justify the use of from three to seven factor based

composites--depending on the adequacy of the future operational predictor battery. We

begin by finding the k orthogonal factors in the joint predictor-criterion space that maximize

Hd. We then rotate these k factors to simple structure of the job/criterion variables against
oblique factors; i.e., Fd would be rotated and Tr obtained. This rotated solution,

Fdr = FdTr, can be extended back into the predictor space to obtain Fir using the

relationship Ftr = FtAgTr. Note that the matrix Ag may have k by m columns and thus be

an orthonormal rather than an orthogonal matrix, after the selection of k factors for rotation.
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This process can be summarized in terms of the following supermatrices:

FiRALDt 12Ag Tr -FFAT H Fj
F .... ... ......... ......... = .....o o •

VA D 1 2 A T FVAgTr F

The oblique factor solution, FT, identifies factors that provide simple structure in

the most classification efficient part of the job/criterion space. These factors are intuitively

effective for classification purposes and can be precisely defined in terms of the predictor
variables. While transformation to Fd provided the optimal space for classification (to the

extent that Hd is optimal), the rotation to simple structure in terms of the jobs provides a
particular set of test composites (i.e., a set of rotated factor constructs) that has the potential
for providing near optimal classification efficiency for assignment to a small number of job

families.

After rotation in terms of the loadings of jobs on the factors, the solution is

extended to test space for interpretation as to content. The extension of these classification

efficient factors back to the predictor space can provide insight into the aptitudes measured

by these factors.

Also, factor extension into test space serves to identify the test composites required
to produce factor scores: Qr = Y Rt-Ftr. We propose these factor scores as the k most

classification efficient assignment variables that can be constructed on the basis of Hd.

An optimal set of factor scores for use in a two stage selection-classification

system, one in which FLS composites based on these factor scores are used to select and
make assignments, would intuitively be based on a combination of factors from Fc and Fd.
One promising approach might base one factor variable on the largest factor of Fc, FcI, and
the remaining factor variables on classification efficient factors independent of FcI. This
could be accomplished by first computing (Cp - FcIFcI') and then computing G and Fd in

this residual space. Using the same notation as above, the rotated classification efficient
solution in the criterion space is designated as For and the solution for predictor variables
against these same factors as Ftr; we will refer to these solutions in residual space,

respectively, as FtrI and Fvrl. The factor solution used to define factor scores in terms of

predictor variables could thus be written as a super-matrix as follows: F = (FtcII Fr2).

3-40



APPENDIX 3C
ALGORITHM FOR SEQUENTIAL TEST SELECTION

APPENDIX 3C.1: OVERVIEW OF APPROACH

The test selection algorithm described in this appendix has a separate module
referred to as the figure of merit. We have described only one figure of merit in the context
of the algorithm, the point distance index (PDI). This algorithm has been incorporated into
a FORTRAN program with several alternative figures of merit, including: Hd, Max-PSE,

and both Hd and Ha modified to avoid HC effects (all five indices are described in the text).
This FORTRAN program has been applied to two data sets each with two subsets of 9
jobs and one subset of 18 jobs; all data subsets had 29 predictor variables from which to

select.

The intercorrelation matrix among predictor tests, Rt, can be factored by the square
root (triangular) method in which each orthogonal factor is all, or part, of a predictor
variable. This factor solution can be extended into the joint predictor-criterion space,

yielding the factor matrix F. Thus

.... factor solution F= •

Building F, , one factor at a time, with each factor consisting of an orthogonal
component of a test corresponding to one "selected" test, a test is selected to maximize a
function of F. In our sequential test selection algorithm, the factoring process remains the
same regardless of the function maximized; only the function of F, changes to represent
the different figures of merit (i.e., Hd, Ha, Max-PSE, PDI, etc.).

The algorithm for sequentially factoring the n by n intercorrelation matrix Rt, and
the extension of this solution to the m by m matrix V, involves applying the same rule to
each F, type solution with k columns (Fvk) to produce n-k Fv type matrices with k+l

columns in order to select the particular Fv(k+l) that maximizes the figure of merit. The
application of this rule to Fvk is repeated until the desired number of tests are selected. In
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each repetition (iteration) k = k + 1. All tests once selected remain selected (although we

know, strictly speaking, this is not optimal, i.e., the maximization of the figure of merit

will only be approximated); we refer to the number of selected tests as k.

At each step, Rt is conceptually divided into the k variables that define the k factors

and the remaining n-k test variables to which these factors are extended. In the factoring

process there is no distinction between extending a factor solution to these n-k remaining

test variables (to produce Fek) or to the m criterion variables to produce Fvk. Thus, if we

write the above transformation process for factoring Rt and extend this solution to V, using

further detail in our notation to reflect the distinction between predictor variables described

above, we have the following relationship:

R1 F qk

. factor solution Fek = Fsk;
LV 1-V k-J

Fqk will be a square matrix with all zeros above its diagonal elements (i.e., it is a triangular

matrix), and Fe and Fv will be obtained by applying the same rule (multiplying by the same

column vector) with respect to the n - k remaining variables of Rt and the m variables of V

respectively. Thus, Fqk is a k by k matrix, Fek is a n - k by k matrix, and Fvk is a m by k

matrix.

We use the index p to indicate the trial variables as they are being used as a

candidate for selection as the next "best" test. Our algorithm calls for proceeding from

Fq(k-1) to Fqk by bordering Fq(k-1) with a trial column of coefficients from Rt and V, that

is, Tkp; Tkp is a selected column from [s.]

The selected column from this super matrix is used to bound Fsk to the right.

(Fs(k-I) I Tk) is multiplied by a k + I element column vector we will call M kp to form a

column vector of partial correlation coefficients, ri(p.12) when k = 3 indicating that a trial

variable designated as p in the above formula will become variable # 3 if selected; we will

call this column of partial correlation coefficients Hkp. Thus,
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F TF
q(k-1) .qkp q(k-1)

F T MkpH ; k) ! = Fs(k-1)p
e(k-1) .ekp kp p' 1=

F :T F
v(k-1) .vkp V(k-1)

and (Fs(k-1) I Hsk) = Fsk ; Hvk being the best of all the Hvkp vectors, and Hvk is a subset

of Hsk.

Tqkp is a null vector, all elements are equal to zero. The value of (1 - Rp2) is

substituted for 1.0, i.e., the element which has the value of 1.0 is instead given the value of
(1 - Rp2). Rp2 is equal to the sum of squares of all elements in a row that are to the left of

the diagonal element in Fe. If selected, this pth variable will become the next row and

column of Fq. Thus Fq, always a square matrix has a 1.0 as its first diagonal element and
(1 -Rp2) 1/2 as the value of each succeeding diagonal element. The sums of squares of

each row of Fq is always equal to 1.0.

A matrix Fkp must be computed for each of the n-k unselected tests (the tests in the

e set) and the figure of merit fm(Fvkp), with p taking values for p = k to n. The test

yielding the largest figure of merit is selected and becomes the next test to be taken from Fe

and placed in Fq. The column vector Mkp is derived from the row vector of Fek

representing the same test variable as is represented by the column vector Tkp. For

example, for a ith row of Fek corresponding to Tkp (let k = 3 in our following example),

the elements of this row vector would be partial correlation coefficients as follows: riI,

ri(2.1). The three elements of M 2p would be as follows: rip/(1-Rp2) 1/ 2 , ri(2.p/(1-Rp2) 1/2,

1/(1-Rp2 ) 1/2 . The value ofRp2 in our example is equal to the sum of (rpl) 2 and (rp2.1)) 2 .

This Rp 2 is obviously the squared multiple correlation coefficient of the pth test variable

with test variables 1 and 2.

In the next step the best of the trial variables is designated as variable 3 and .i,3.12)

is computed for all the remaining variables (i.e., for all variables other than 1, ', and 3).

This next step is a factor extension process, from Fqk to Fek and Fvk. In this factor

extension process M 2 is based on Rk 2 = (r 13)2 + (r3(2. 1))2, in contrast to the definition of

Rp2 as equal to (rpl) 2 + (rp(2.1)) 2

We will define the more general algorithm after first providing an example with a

specified figure of merit and k successively taking values of ., 2, and 3. We use PDI as

3-43



the figure of merit and apply rules for selecting the first, second and third tests to

approximate a maximization of PDI using a sequential process in which each "best" test is

retained in the battery without further question once it is selected. This process can be 0

easily extended to the selection of four or more tests.

APPENDIX 3C.2: PDI EXAMPLL; SELECTING THE FIRST AND
SECOND TEST 0

Prior to selecting he first test k is equal to zero and Fsk is a null set. Thus , our

figure of merit must be computed directly on each Fsp. For our PDI example this calls for

summing the absolute values of the differences from the column means for each trial Tlp
(i.e., a column of V). The test which yields the largest sum is selected as the first factor.

We designate this first selected test as test variable 1, and the column of R bordered below

by V corresponding to this best test is identified as Tsi; Fsk = Tsk only when k = 1.

We now have a Fsk (k = 1) a column vector with n+m elements, which can be

bordered with T2p in order to commence the process of selecting the second test. M2p has
its two elements as follows: -rip/(l-(rij) 2 )"/2 , 1/(l-(rij) 2)1/ 2 . We now border Fsi with

Ts2p and compute (assemble) the (n+ m) by 2 matrix (Fsl I Ts2p). From this matrix, Fsjp

bordered by Ts2p, each M2 p vector, as a function of the pth row of Felp, can be computed.

Using the column vector Hs2p, where Hs2p = (Fsj I Ts2p) M2p, Fs2p = (FslI Hs2p).

A figure of merit is computed for each trial Fv2p and the predictor test

corresponding to the largest PDI selected and designated as test variable 2; The matrix Fv2p
is obtained using the same process (using the same M2p) as produces Fs2 as described

above. Hv2p = (Fvl I Tv2p) M 2 p ,and Fv2p = (Fvl I Hv2p). Once the value of p

associated with the Tv2p which yields the Hv2p which in turn provides the best figure of

merit has been identified, we designate the M2p associated with the best Te2p as simply M2

and define the corresponding best test as test 2. The column of R bounded below by V 0

corresponding to test 2 is now designated as T2 . We will now wish to compute Hs2 as a

function of M 2 , Fsj and Ts2. Fs2 can be computed as follows: Fs2 = (Fsl I Hs2),
Hs2 = (Fsl I Ts 2) M 2 , where M 2 is equal to the column vector,(-rlp/(1-(rpj)2) 1/2 ,

l/(1-(rpj)2)1/2), and T 2 is equal to the column vector: (r12, 1.0, r32, ...rn2, ... v12, 0

...Vm2),where the second best test is designated as variable 2. Note that Tk, in general, is

equal to the column vector: (rik, r2k ... nk .. Vlk .. Vmk).

The figure of merit for selecting the test to be designated as test 2 is,

in our example, PDI. We compute PDI from each trial Fvkp, Fvkp = (aij), as
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PDI = SUMim(SUMjk(aij - aj*) 2 ) 1/2 . The test that yields the largest value of PDI is

designated as test 2. Note that aj* is the mean of the m values of aj for the jth column of

Fv.

APPENDIX 3C.3: PDI EXAMPLE; SELECTING THE THIRD TEST

The same process as is used to select test 2 is used to select test 3. We commence
with the (n + m) by 3 matrix ,(Fs2 I Ts3p) and compute M3p as a function of the pth row of

Fe2; the two elements of this pth row are squared and summed to provide Rp 2 in the

computation of the M3p to be used in conjunction with Tv3p. The first two elements of the
pth row are multiplied by - 1(1-Rp2)1/2 to provide the first and second elements of M3p;

the third element of M3p is equal to 1/(1-Rp2)1/2 . Thus M3p is a column vector as follows:

(-rpl/(1-Rp2 )1/2 , -rp(2.1V(1-Rp 2 )1/ 2, 1/(1-Rp2 )l/2). Rp 2 = (rpl)2 + (rp(2.1)) 2.

The column vector , Tkp, and the row vector used to compute Mkp represent the
same test variable. While Tkp consists of correlation coefficients (pth column of the super

matrix Rt bordered below by V), the pth row vector of Fe(k-1) used to compute Mkp is of

course made up of factor coefficients.

The best Tkp is the one which provides the best figure of merit resulting from the
use of that Tk, with p taking on n-k values to represent the remaining unselected tests.

The selection of the best Tkp provides for the identification of the kth "best" test. When we

have just selected the third test (k = 3), our next step is to extend the solution Fqk to create

Fek and Fvk. In this factor extension process M3 is based on (Rk)2 = (r13) 2 + (r3(2.1)) 2 ,

when k = 3.

Each iteration in which one more test is selected requires the computation of n-k

column vectors, each having k elements, to be used as a trial multiplier of each row in

(Fv(k-1) I Tvkp) to produce the kth column of Fvkp that in turn produces the largest PDI
value. Each of the first k-I elements of Mkp ( remember that this column vector has k

elements) is equal to apj(-1/(1-Rp2)l/ 2 ), where Rp 2 = SUMjk (rpj) 2 and apj is a factor

coefficient in the pth row and jth column of Fe(k-1); the last element of Mkp is equal to

1/(l-Rp2)112. All cells above the diagonals in Fqk will always be equal to zero.

APPENDIX 3C.4: DERIVATION OF FORMULAE FOR Mkp AND Mk

The creation of a trial column, Hvkp, to border Fv(k-l) to permit the selection of the

kth best test requires the computation of Mkp. When the best (Fv(k-1) I Hvkp) has been

selected, the corresponding Tkp and Mkp have also been selected, and Mk has been
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defined. For k = 3, we express Fs(k-1) in terms of the ith row vector of this factor matrix

and similarly express Hsk and Tsk in terms of correlation coefficients and demonstrate that

(Fs(k-1) I T) Mk, does indeed equal Hk.

We first define Hk in terms of its ith row element, ri(3.12). This is the correlation of

the ith variable with the component of variable 3 that is orthogonal to variables 1 and 2.

It can be readily shown that ri(3.12) = (ri3 - ril r13 - r3(2.l) ri(2.1))/(1-Rk 2 )1/ 2. Using this

same notation, the ith row of (Fs(k-1) I Tk) can be written as follows: (rij, ri(2.1), ri3 ).

For k =3 our definition of Mk provides the following column vector: (-r31/(1-R2)l/2,

-r 3 (2 .1)/(1-R 2)l1/2 , 1/(l-R2)1/ 2 ). Using this notation it is clear that (Fs(k.1) I Tk) Mk

= Hk, when k = 3. It is also easy, although not accomplished here, to prove the general

case, i.e., for k equal to any value.
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CHAPTER 4. MODEL SAMPLING AND SIMULATION
AS A TOOL FOR MEASURING UTILITY

A. INTRODUCTION

A simulation capability which can provide accurate, defensible estimates of mean

predicted performance (MPP) as the outcome of any prescribed assignment process without

the need to make questionable assumptions, while precisely reflecting a defined applicant

population, is essential to the credible estimation of the utility of selection/classification

practices. An adequate simulation approach should permit the determination of MPP for

both the theoretically optimal and the invariably flawed operational assignment processes.

The relatively simple analytical techniques useful in computing MPP in the selection

mode are not similarly useful in the classification mode. Although the required means and

variances of predicted performace for selected and allocated groups can be defined in terms

of definite multiple integrals, integration of the required functions of the multivariate normal

distribution produces mathematical equations too complicated for practical use.

Many classification problems can be expressed in terms of definite integrals of the

normal multivariate distribution, defining assignment regions by half-hyperplanes (see

Lord, 1952). In a paper presented at the 1985 National APA Convention (McLaughlin,

Rossmeissl, Wise, Brandt, and Wang, 1985), the author concurs with Lord's statement

that "the necessary expressions at present available for the integrals are too cumbersome to

be of practical use" (Lord, 1952). This statement is just as true today as when Lord

published his article.

Such problems can be solved by a model sampling approach. Model sampling

(Johnson and Sorenson, 1974) provides not only a practical way to solve such

mathematical equations but also the flexibility to impose operational procedures and

conditions precisely on the assignment problem.

Our primary concern in this chapter is how to obtain MPP scores as measures of

PUE, PSE or PCE. However, this approach can also be used to determine whether

adequate numbers of qualified incumbents will result from specified cut scores or training
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policies, or how many more applicants would have to be recruited if minimum

qualifications were to be raised. The possibilities for using model sampling in experiments

with simulated systems are almost inexhaustible.

The term model sampling implies the generation of synthetic scores that have

statistically equivalent properties as contrasted to empirical scores. That is, synthetic scores

generated to have the characteristics of test scores in a predictor battery would yield the

same covariance matrix as would the empirical scores, provided both samples were

sufficiently large. The covariance matrices for a number of synthetic score samples would

vary around the covariance matrix selected to represent the universe, much as would

covariance matrices based on samples of empirical scores drawn from a universe of score

vectors.

When large data bases containing test scores and values of other relevant variables

exist (several years of Army input are available for use as a result of Project A), such data

can frequently be used instead of synthetic scores. Both pros and cons to the use of such

simulations in the place of model sampling should be considered. The shape of the score

distribution, with all its warts and blemishes, will be more realistic for a simulation using

empirical scores as compared to synthetic scores generated to have a normal distribution.

However, with a little extra effort, synthetic scores can be generated to reflect any degree of

censoring that is desired, and thus produce distributions closer to a distribution of a future

population than is provided by the detailed shape of the distributions of the past years.

Model sampling has increased flexibility over simulations using data base scores.

Samples of any number and size can be generated for any universe, including a current or

future youth population, ff that universe can be defined by both the covariances among the

relevant predictor variables and the validities of these variables against all criterion

components. Meeting these conditions permits the exploration of selection policies that

would produce a different input than is present in the data bank, and permits a more direct

basing of selection/classification results on a youth population than is possible using data

base scores. Also, empirical groups of soldiers possessing certain scores are sometimes

small in number and the resulting necessity to use incomplete data may produce empirical

correlation matrices that are not positive semi-definite (i.e., could not occur as the result of

analyzing complete real data sets).
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B. MODEL SAMPLING CONCEPTS

1. Generating Synthetic Scores with Designated Expected Covariances

Simulations to determine the PUE, PSE, or PCE of alternative sets of predictors,

selection/assignment processes, criteria, or job structures can use scores either from data

banks or from the generation of synthetic scores. A vector of synthetic scores representing

an artificial person, or "entity," should have the same statistical properties as random

samples of empirical scores drawn from the relevant universe of such scores.

We will consider synthetic scores to be adequate for the simulation of a system that

includes personnel procedures. We will also consider the impact that personnel decisions

have on job performance provided the scores have the desired Gaussian shape to their

distribution and also have their expected means and covariance matrices equal to the

universe values. This universe should represent the personnel entering the system, the

youth population in general, applicants, trainees, workers eligible for the first stage in the

system being simulated. In the remainder of this section we will assume that: (1) we have

universe covariance matrices representing the desired universe, and (2) both predictors and

performance measures are appropriately depicted as having normal (Gaussian)

distributions.

We will later discuss the mechanics of how to generate an N by n matrix of normal

deviates, Xn, such that the expected matrix, 1/N E(Xn'Xn), is equal to an n by n identity

matrix. We designate a "score" matrix in which each element is divided by the square root

of N by writing the matrix in caps, bold face and underlined, thus, 1IN E(Xn'Xn) = In.

The test scores we wish to generate, in standard score form, are considered in samples of

N entities as N by n matrices referred to as Y. Where Ri is the matrix of correlation

coefficients among the tests in the universe, E 1/N(Y'Y) = Rt. Similarly, for a set of m

jobs predicted by these n tests, the N by m matrix of predicted performance scores (LSEs)
is designated as Z, and 1IN E(Z'Z) = C; C is the matrix of universe values for the

covariances among the predicted performance measures. We will show that we have the

option of generating the Y matrix as a transformation of X, and using a regression

equation to compute the scores in the Z matrix, or, alternatively, of directly generating Z as

a transformation of an N by m matrix of normal deviates, Xm, whichever is more

economical (depending on whether m or n is larger), or whichever best suits the research

design.
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The matrix Y can be generated from X,, using a transposed factor solution of R, as

the transformation matrix. That is, XnF t ' = Y, and E 1/N(Y'Y) - R t where FtFt ' = R1.

This relationship becomes apparent from observing that Y'Y = FiXn'XnFt', and that

E(FtXn'XnFt') = FtE(Xn'Xn)Ft' = FtIFt' = Rt. Similarly, XmF' = Z. where FF' = C,

and E(Z'Z) = F(E(Xm'Xm))F'= F(Im)F' = C.

2. Synthetic Factor Scores

Synthetic factor scores with expected means of zero, standard deviations of 1, and

expected intercorrelations of zero can be readily produced. A sample of N entities, each

with k factor scores, provides a matrix Xk, where E(Xk'Xk) = Ik. Both predictor and

criterion variables can be expressed in terms of these factor scores.

When the columns of a factor solution represent the hypothetical constructs

commonly referred to as fa'ctors, the rows provide the regression weights which, when

applied to the factor scores, produce an LSE of the variable represented by the row. If the

factor solution reproduces a correlation matrix with communalities in the diagonals,

FhFh' = Rh, the matrix of scores produced by applying the "best" weights, Fh, to the

factor scores in Xk (i.e., Yh = XkFh') represents the row variables in common space.

However, if ones are placed in the diagonals of the correlation matrix and the factorization

is complete, scores for the row variables will be provided in total space and XKFt' = Y

while XkF' = Z; k denotes the number of columns in the factor solution and will be equal

to n or m, respectively, when a complete factorization is accomplished in the "total" space.

C. EARLY USE OF MODEL SAMPLING IN PSYCHOLOGICAL
RESEARCH

Lewis (1975) provides a brief description of the historical background of the

sampling process we call model sampling. Sampling is said to have been first used by
"student" to determine the t distribution. Student's population was obtained by selecting

3,000 pairs of index finger measurements of criminals; these measurements were written

on cards and sampled by drawing from a shuffled deck.

Bisphamn apparently was the first to sample from an arbitrary theoretical population.

A population of 30 counters was drawn, without replacement, from urns.

The first published tables of random digits, attributed to Tippit, were sampled from

1,000 small cards placed in a bag. After each digit was recorded, the card was replaced

and the cards in the bag were mixed well. The numbers drawn from the bag vere
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converted into random numbers uniformly distributed through use of a key. Finally, in
1951, the Rand corporation produced one million random digits by using a mechanical

device; the tools for accomplishing the first step in model sampling--the generation of

random (or pseudorandom) numbers--became generally available to researchers.

Model sampling differs from Monte Carlo techniques in that the latter does not

necessarily involve the simulation of a decision process or the behavior of a system (the

integration of such processes) but does, whenever possible, use variance reduction

t,-.hniques that provide a given level of fidelity with fewer observations. Most such

variance reduction "tricks" further remove the similarity of the Monte Carlo process to any
real process or system. Model sampling is a means of accomplishing simulations just as

Monte Carlo techniques are numerical analysis tools for the solution of mathematical

problems (Wagner, 1969). Model sampling is a "technique of abstracting a system in

terms of the statistical properties of it s entities and the operations to be performed on those

entities." (Johnson and Sorenson, 1974, p. 38).

Kaiser and Dickman (1962) provide a method of generating synthetic scores "to

yield sample R's from an arbitrary population R" (p. 179); their method is essentially the

same as is described in the previous section. The authors use a simplex correlation matrix
4 given by Guttman as the R in their example. They first computed a principal component

(pc) factor solution of R, generated a sample of scores, computed a pc solution of R. They

then used this second transformation matrix on the original sample of random normal

deviates to generate scores yielding a correlation matrix equal to the population matrix R.

9 Wherry, Naylor, Wherry, and Fallis (1965) review the literature on "integrating

random error into known functions to generate fictitious data" (p. 304) whereby to test
methods of fitting fallible data. They describe their own method of generating synthetic

trait scores when providing stimuli for raters in an Air Force experiment. Their method

49 differs from that of Kaiser and Dickman in that Wherry et al. commence their procedure
from a population factor structure instead of from a population correlation matrix that

requires factoring to c tain a transformation matrix. The use of their method "to test cross-
validity of different methods of test selection and prediction" (p. 311), as well as the

* conduct of a variety of experiments involving the evaluation of profiles by raters are

proposed.

Three methods for generating multivariate normal samples of synthetic scores from

a population with prescribed intercorrelations are compared by Barr and Slezak (1972). All

three methods require the generation of random normal deviates and their transformation
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into scores having the desired expcted covariances. One method is called the rotation

method and is based on the existence of a "matrix P such that P'CP = I' (p. 1049); the

transformation matrix would thus be equal to the pc factor solution of C (to Fd' or Ddl12A' '

in the notation of Chapter 3). The second method is referred to as the "conditional method"

and the third and "best" method is the "triangular factorization method." "Best" is defined

in terms of the time required to compute the transformations and to generate 1,000 score

vectors. There are, of course, issues to consider other than the computational economy

associated with computing a score vector (e.g., the amount of information pertinent to PCE

provided by a given number of factors of a given type).

A more detailed description of the generation of random scores having a

multivariate normal distribution is provided by Naylor, Balintify, Burdick, and Chy

(1966). These authors recommend (pp. 97-99) use of a "square root method" factor matrix

(another name for the triangular factorization mentioned above) as the multiplier of vectors

of normal variates with zero mean and unit variance. Most of their description is taken up

with an explanation of the square root factoring method. They apparently consider

sufficient justification for this approach to be the probability density function of X to be:
f(x) = [det (2 pi R)]- 1/2 exp [-1/2 (X'R-1X)].

The model sampling approach reported by Sorenson (1965a, 1965b), Niehl and

Sorenson (1968), Olson, Sorenson, Haynam, Witt, and Abb6 (1969), Johnson and

Sorenson (1974), and by others of the same Army research team, is among the first in the

literature that report MPP standard scores as the outcomes of simulations of personnel

selection/classification procedures. 19 A number of design issues arose in these early

applications of the model sampling approach to the evaluation of PUE or PCE--issues that

did not have to be faced in the psychometric studies discussed in the paragraphs above.

Some of these issues pertaining to the simulation of personnel systems will be discussed in

the following section.

19 Sorenson's doctoral dissertation in 1965, University of Washington, used MPP standard scores as
outcomes in a simulation that utilized empirical data; Brogden (1946b) pioneered the concept of
equating PCE to MPP but did not make use of model sampling.
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D. GENERATING SYNTHETIC SCORES FOR MODEL SAMPLING

1. Pseudorandom Numbers

A pseudorandom number generator is a program to simulate a sample drawn from a
population with known distribution characteristics. Such programs produce a repeatable

finite sequence of numbers which can be perfectly predicted from the initial conditions

[algorithm, parameter(s), and seed]. The aim is for the sequence to possess the essential

statistical properties of a truly random sequence, so that it can be justifiably used in place of
a random sample drawn from a specified universe.

The construction and testing of random number generators by themselves constitute
a major field of study. Would-be developers of their own generators or even of their own

parameters should consult the extensive literature on this topic. Here we will discuss this

topic just enough to afford the reader an opportunity to become an educated consumer.
* Most scientific, statistical or simulation software packages have at least one built-in

generator (or, more usefully, a subroutine) whereby to produce uniformly distributed
(rectangular) random numbers; many will have generators of Gaussian distributed
numbers, and some will have generators that yield numbers with Gamma, Beta, or Poisson

0 distributions.

Caution must be exercised in the use of some of these readily available generators; a
few are suitable only for recreational games or classroom exercises. Any scientist should

want to have documentation on the generator being considered for use in conducting a
model sampling experiment, and insist on providing one's own carefully recorded seed to

assure that the experiment can be truly replicated.

Researchers planning to use a readily available random number generator will either

46 commence with uniformly distributed numbers to be transformed into a distribution of

another shape (usually Gaussian), or will use a generator that directly produces numbers
with the desired distribution. All researchers can take precautions that will reduce negative

effects that the use of a questionable generator in their study can have on the credibility of
their results. Research strategies to minimize the impact that unwanted regularities and

other defects in the generator can have on model sampling results will be discussed later.
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2. The Rectangular Distribution

The uniform, rectangular distribution of numbers for a finite set ranging from zero

to one has a mean of 0.5, and a variance of (1/12) or 0.08333, a third central moment of

zero, and a fourth central moment of 0.0125. The output of a random uniform number

generator should approximate these values for the first four central moments. Alternative

generators can be compared with respect to how closely these theoretical values are met for 0

the sample sizes to be used in an experiment. More precise goodness-of-fit tests can be

conducted by dividirg the zero-one interval into classes and computing Chi-square.

Similarly, the Kolmogorov-Smirnov test can be performed for the accumulative step

function over the zero-one interval.

A satisfactory random number generator must provide more than a good fit to the

desired theoretical distribution; it must also exhibit apparent independence among the

numbers output by the generator and must not exhibit unwanted regularities or patterns.

Marsaglia (1968) warned that random numbers produced by multiplicative generators,

when considered as coordinates of points located on a unit n-dimensional cube, will fall on

a relatively small number of parallel hyperplanes, indicating that no single generator should

be used to generate more than one element in an entity vector (one element in each row of

the matrix X).

The desired independence in generator output is frequently measured in terms of

serial correlation, runs and the distributions of sums or maximum values in subsets.

Dependence and regularities in the output of generators is appropriately more feared by

investigators than are discrepancies from the shapes of theoretical distributions.

Most, if not all, pseudorandom number generators must be empirically tested to

determine their suitability, and there is no theoretical basis for extrapolating from tested

sequences to other untested sequences for the same generator. Also, most algorithms for

pseudorandom number generators require different parameters for different sized computer

words. Thus a sequence of random numbers created for a model sampling experiment

cannot be replicated, with only a few exceptions, across different types of computers (e.g.,

different word length or ones versus twos complement machines). In general, the exact

replication of a model sampling experiment can be accomplished only when the computer to

which the experiment is being migrated is of the same word length and logical type.

Tausworthe (1965) provides a generator based on a theory which makes it

independent of word length and which predicts good statistical behavior prior to empirical
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tests. Canavos (1967) makes an empirical comparison between a generator identified as

GETRAN which implements Tausworthe's method and RANF, a generator based on the

0 conr- -nly used congruence algorithm using parameters provided by Control Data for use

on their 6,000 series computers. Thus RANF is the manufacturer's recommended uniform

random number generator for the computer used to make the comparison.

Results for the two generators were similar except that GETRAN fared better on the
tests for runs and for serial correlation when smaller sample sizes were used. "Based on

these tests, the indication is that the random properties of the sequence generated by RANF

decay as the sample size decreases" (p. 490). This is in marked contrast to GETRAN

which gave good results for those smaller samples (e.g., N = 200). The author

recommends the use of Tausworthe's approach because: (1) it is machine independent,

(2) it tests well, and (3) it is easily programmed (and executed) in FORTRAN without

sacrificing any of its characteristics.

0 Those contemplating the conduct of a model sampling experiment may wish to learn

more about uniform random number generators. One of the best introductions to pseudo-

random number generators is provided by Knuth (1981). Knuth is very pessimistic

regarding tne quality of the readily available generators, warning that: "the most common

6 generator in actual use, RANDU, 20 is really horrible" (p. 173). He urges students, in

exercise 6, "Look at the subroutine library of each computer installation in your

organization and replace the random number generators by good ones. Try to avoid being

too shocked at what you find" (p. 176). McLaren and Marsaglia (1965) propose a number

of tests for generators that go beyond the serial tests and chi-square tests for goodness of fit

to the theoretical distributions (tests customary in 1965). Based on their own test results

the authors propose combining generators.

We believe most researchers would prefer to use off-the-shelf software, but could

readily provide their own generator. Those interested in generators for IBM-type

computers should read the documentation for SSP. As noted above, RANDU, the

generator in SSP, should not be considered adequate for more than preliminary analyses,

student demonstrations, or games. In general, caution should be exercised in the use of

generators provided by the computer center and should not necessarily settle for the

generator built into a statistical package. Two very readable publications on pseudo-

random number generators (Larkin, 1965; Kuehl, 1969) are provided by the Army research

20 RANDU is the algorithm implemented in SSP.
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team which first applied model sampling techniques to the evaluation of selection and

classification strategies. Anyone with a need to provide themselves with an immediately

acceptable generator should follow the advice of Park and Miller (1988). 4

Noting the frequent criticism of earlier pseudorandom number generators, and

having an immediate need for a series of model sampling experiments conducted in 1989

through 1990, we designed our own generator. We concluded that we could appropriately

indulge in overkill, providing ourselves with security against future criticism with very little

cost in computer time, by using a number of independent generators to produce each score.

As suggested by Park and Miller (p. 1197), we obtained the list of 205 "best" multipliers

provided by Fishman and Moore (1986) and used these multipliers in separate generators

for each variable.

3. Gaussian Distributions

The central limit theorem guarantees asymptotic normality of sums of independent

random numbers regardless of the distribution of the individual numbers. The sum of k

independent variables, each with a standard deviation equal to S, will have a standard

deviation of (kS2)1/ 2. Thus the sum of 12 uniform random numbers uniformly distributed

over the interval of zero to one, each with S2 = 1112, will approximate a Gaussian

distribution with a mean of 6 and a standard deviation of one over the range of zero to

twelve. A Gaussian distribution should also approximate the equality of third and fifth

moments to zero, the fourth moment to 3, and the sixth to 15. The formula for

transforming a sum of uniform random numbers to a normal deviate with a standard

deviation of one is as follows:

xij = [( U -k12] (121k)1/ 2 ; (10.1)

where ui is the ith uniform random number of a series of such numbers going from 1 to k

and xij is the element of the ith row and jLh column of the matrix X, X = (xij ).

The central limit theorem also applies to the sum of random normal deviates. An

unweighted, or weighted, sum of scores with an approximately Gaussian distribution will

approximate the theoretical distribution more closely than do the individual scores. This

incidental improvement resulting from the transformation process that provides the desired

covariances is greater when the number of variables is larger and the average

intercorrelation coefficient is smaller. Some improvement will always result from summing
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k scores and dividing by (k) 1/2 . However, the researcher has more reason to be concerned

with the generators output with respect to serial correlation, runs, and unwanted regularities

(pattens) than with the closeness of the fit to the Gaussian distribution.

The selection/assignment process being simulated in a model sampling experiment

may utilize predictors whose distributions are definitely not Gaussian. For example, the

AFQT is expressed in percentile scores provided by a conversion of the test composite
scores into a rectangular distribution. From the above discussion it is obvious that when a

procedure in which synthetic scores with the required mean, standard deviation, and

rectangular distribution are first created and subsequently transformed, along with other

variables, to achieve the desired intercorrelations, the once rectangular variable will be
found to have assumed an unwanted bell shape. The effect of the phenomenon known as

the central limit theorem will also distort other non-normal distributions when the linear

transformation for producing the desired R, is applied.

A workable approach to achieve boh the desired non-Gaussian distribution and the

relationship E(Y'Y) = Rt, is to first create normally distributed variables with expected

covariances offset just enough to provide for the later distortion which will occur when

selected variables are transformed into desired non-normal distributions. Boldt (1965)

derives formulae for computing the amount of change occurring in the values of product

moment correlation coefficients when the shape of one or both variables are changed from

normal to rectangular, or vice versa. Formulae provided by Boldt show that the synthetic

normal deviate that is to be later transformed into a rectangular shape should have its

correlation coefficients contained in an "offset" R, increased by a factor equal to (3/pi)1/2

(approximately 1.02333). The later transformation of one variable to a rectangular

distribution will reduce the expected values of these "offset" coefficients to the desired

values.

The multiplier to be applied to the offset coefficients in Rt when each of a pair of

normal deviates are to be first transformed to achieve the desired expected corelations and

later transformed to a rectangular distribution is less directly provided by BoldL. He

provides an equation that can be used iteratively to obtain the required multiplier. Defining

0 each correlation coefficient between two Gaussian distributed variables as rg and the

correlation coefficient between the same two variables altered to assume a uniform

(rectangular) distribution as ru, we rewrite Boldt's formula (p. 2) as follows:

ru = (6/pi) Arc Tan [rgI(4 - rg2I 1/2 (2)
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We obtain our desired multiplier by discovering, by trial and error, the value of rg

(the offset value) that will provide a value of ru equal to that we wish to have in R1, our

correlation matrix that defines the population we wish to sample in our model sampling

experiment. The multiplier we use to produce the values in the "offset" matrix for those

pairs of variables for which both variables are to be later transformed to rectangular

distributions, is rg/ru.

Regardless of the convenience an off-the-shelf, or built-in generator may offer,

researchers should avoid using any generator that does not permit the use of a designated

seed permitting the repetition of the experiment. Also separate pseudorandom number

generators should be used for each variable, each column of X. Our own program for

creating random normal deviates uses a separate generator for each random number used to

provide the vector of scores for each entity; these scores made up one row of X. For each

synthetic normal deviate score we generate a uniformly distributed pseudorandom number,

convert to an approximately Gaussian distributed number using a table look-up procedure,

and then aggregate a number of these numbers to form the score for a specific variable in

the score vector for an entity. We believe we are indulging in overkill to use so many

independent components to constitute a score, but have found this program both affordable

and reassuringly valid.

E. MODEL SAMPLING RESEARCH DESIGN ISSUES

1. The Model Sampling Study

Model sampling studies are generally of two types: (1) evaluation of statistical

methodology (e.g., the testing of robustness and distribution characteristics--Harris (1966)

and Shields (1978), or (2) evaluation of utility of alternative research and operational

strategies and procedures relating to the selection and assignment of personnel. We will g

focus on the latter type, in which synthetic scores provide the input into simulated

personnel system models and the output provides a basis for determining the utility of

alternative approaches.

Model sampling experiments are usually embedded in studies which, after the initial

systems analysis and problem formulation stage, include the following five steps:

(1) identify and compute population values for the variables that provide the input

into the simulation; populations of interest may comprise "youths," applicants,
assignees, trainees, workers, candidates for promotion, etc.;
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(2) generate synthetic scores for predictor and performance variables;

(3) simulate significant aspects of the personnel utilization process (i.e., selection,
assignment, performance, performance evaluation, career decisions,
reassignment, etc.);

(4) determine results (the output of the simulation), usually including the
computation of MPP standard scores and the extent to which policy goals are
met;

(5) analyze and interpret results; the output of each simulation becomes the unit of
analysis for the testing of hypotheses and interpretation of results (including
conversion of results into utility measures where appropriate).

0 Steps 2, 3, and 4 constitute the actual model sampling experiment. The

experimental conditions contrasted for the testing of hypotheses may be reflected in
characteristics of the entities generated in step 2 or in the decision processes of step 3. For

example, alternative methods for selecting tests or test composites create different sets of
variables which, in turn, require the generation of different sets of entities. A comparison

of alternative selection/assignment algorithms might call for the use of the same entities for

all experimental conditions; in such an experiment the experimental conditions may be

distinguished by the use of different processes (i.e. separate simulations) in step 3 with the
separate paths continued into step 4. Several model sampling designs are described in the

appendices of Chapter 4.

Model sampling has both advantages and disadvantages when compared with a

methodology that simulates a personnel utilization process using associated records of real

persons obtained from a data bank. The data bank source of entities often seems more

credible to managers who lack familiarity with model sampling; this approach provides

scores comprising distributions that actually occurred in selecting from an applicant
population, and thus the process for obtaining the scores can be understood readily without

recourse to statistical theory. While the rejected applicants are not usually present in such

data banks, the upper end of the test score distributions approximate that of applicants. On
the negative side, the selected applicants have emerged as a result of both recruiting policies

and selection practices that may or may not be continued into the future.

A major advantage of model sampling is that a youth population can be generated

and the applicant population determined as the consequence of proposed recruiting policies;

similarly, selection standards can be lowered to let in less qualified applicants or otherwise

modified to make it compatible with recruiting strategies and/or requirements of the
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simulated system. Also, complex research designs using many independent samples can
be utilized without making any one sample too small to provide stability of results.

S
Some of the detail provided by a data bank, while representative of the past, may

have little chance of being replicated in the future in view of changing policies. Also the

number of independent samples representing the desired population that can be drawn from
a data bank frequently precludes the use of research designs that require many moderately •
large samples and some types of repeated measure designs. On the other hand, the
availability of large data banks to determine empirical relationships can greatly improve the
usefulness of the model sampling approach.

2. Entities for Model Sampling Experimentation S

The researcher sometimes has the option of directly generating vectors of LSE
scores or vectors of test scores that can be converted to LSEs; the entity is typically defined
by its score vector. We will consider a type of model sampling experiment in which S
predicted performance scores (LSEs) are used to make all the decisions in the simulation of

alternative selection/classification processes, and the MPP standard scores of those
assigned to jobs are used as the result. In such an experiment the entities can consist of
either predictor (test) scores or predicted performance scores. 0

Using the same notation as in section B above, XnFt' = Y, and Y(Rt 1)V' = Z.
Thus Z = XnFt'(Rt- 1)V'. Alternatively, Z = XnF', where F = VFt'(Ft'Ft)- 1 =

VB(Db)- 1/2 . As noted in chapter 2, F can be defined in terms of the equation C = FF',
where C is the m by m matrix of covariances among the predicted performance scores of

the m jobs. In order to make a useful distinction in the present discussion we will define
the F based on a factorization of C as Fc and note that Fc is an orthogonal rotation of the F

defined as VB(Db) - " / 2 . We can now say that Z = XmFc' and that E(XmFc') =
E(XnVB(Db) 112. When m > n, Fc will have m - n null columns but the non-null columns 0

of Fc will be within an orthogonal rotation of F defined as a factor extension of Ft. When
n > m, Z can be obtained more economically by generating Xm (m random numbers per

entity) and generating Z as equal to XmFc'.

The matrix Rt representing the population intercorrelations among n predictor
variables may not be positive definite (have n positive non-zero roots). Worse, since this

matrix may have been computed on a sample that included incomplete data on some
variables, or have been compiled from several sources including a few judicious estimates,

Rt may not even be positive semidefinite (i.e., has at least one negative root proving that Rt
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could not have resulted from Y'Y where the elements of Y are real numbers). In either

instance it will usually be possible to select the k largest factors having positive roots as a

replacement for Ft. In most cases this n by k factor matrix Ftk will adequately reproduce

Rt. The matrix reproduced by Ftk can, in most situations, be considered to be a better

estimate of the universe values than is the original version of Rt.

When an adequate reproduction of Rt is provided by k factors, k < n, the synthetic

test scores can be provided from pseudorandom normal deviates, that is, Y = XkFtk',

where YY is equal to the redefined population RI, an intercorrelation matrix equal to

FtkFtk'. Similarly, if C is adequately reproduced by the largest k columns of Fa, Z is

appropriately equated to XkFak'. 2 1

3. The Repeated Measure Design in Model Sampling

We will first consider a model sampling experiment in which the conditions being

contrasted are all process related, that is, one in which none of the experimental contrasts

requires the use of different entities to express different conditions. In such an experiment,

each sample of entities can be used at each level of each treatment (factor) in the

experimental design, and the full benefits can be realized from using a repeated measure

design to reduce error variance. All the benefits that can accrue in the traditional

psychological experiment from having each subject be his owi control can be realized

using entities instead of human subjects.

Experiments in which alternative methods of test selection are used in determining

operational test batteries will usually require separate sets of variables to represent each
selection method (experimental condition). Such an experiment requires the production of

separate replication sets of entity samples reflecting each experimental condition.

The model sampling procedure for creating one set of entity samples for each condition can

use either: (1) a single vector of pseudorandom normal deviates separately transformed
into each entity representing one experimental condition or, (2) separate vectors of pseudo-

random normal deviates generated as the first step in producing each entity. The first

procedure can provide highly correlated entities if the "best" transformation is used. The

second procedure would provide completely independent entities. The use of correlated

entities, as provided by the first method, will result in smaller differences being statistically

significant.

21 Ftk is a k factor PC solution of Rt and Fak is a k factor PC solution of C.
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When experimental conditions are expressed by the use of different variables in the

simulated personnel procedures, all variables can usually be defined in terms of the same

factor solution or in terms of factors that are within an orthogonal rotation of each other.

Thus two test score vectors transformed from the same random normal deviate vector may

be used as two separate entities in the simulation (to express two different experimental

conditions), but these two entities behave statistically as if they were aspects of the same

artificial person. A repeated measure design is then appropriate for the analysis of

simulation results since this approach can reduce the error term to the same extent as the use

of the same subject under two experimental conditions.

To illustrate the above example, we will consider two sets of N entities, each
consisting of one half of a set of ten synthetic test scores. Y1 is one N by 5 matrix of

synthetic test scores and Y2 is the second N by 5 matrix of test scores. Both YJ and Y2

are transformed from the same N by 5 X,, matrix (n equals 5). All n test scores are

obtained from the equation, Y = XnFt'; each row of the N by n matrix Y represents an

artificial individual and each column of Y represents a particular test. Each submatrix, both

Y 1 and Y2 , consists of 5 columns of Y with the same row of Y1 and Y2 representing a
single individual. If the researcher desires independence between Y1 and Y2, he or she

need only obtain Y1 and Y2 using two separate Xn matrices separately transformed into Y1

and Y2 . The implementation of such alternataive approaches is described in more detail in

the appendices of Chapter 4.

In some sampling experiments the primary contrast may be between the results

obtained from using factor scores corresponding to two separate factor solutions. Unless

(or until) the factors making the smallest contributions are deleted, most alternative factor

solutions will be within an orthogonal rotation of each other (obviously, oblique solutions

are one important class of exceptions). Prior to deletion of these almost null (or complex)

factors from the alternative orthogonal factor solutions of either Rt or C (using ones in the

diagonal of Rt and the multiple correlation coefficients as the diagonal elements of C) are

orthogonal rotations of each other.

As noted in an earlier chapter, an orthogonal rotation of factors, factor scores, or

test scores will not change the PCE resulting from their use in an assignment process. In

other words, the same PCE attaches to all sets of scores that are within an orthogonal

rotation of each other. Clearly, the use of different sets of factor scores obtained from

transforming the same random vector is also analogous to using a subject as his own

control, just as in the above example in which the entities consisted of test scores.
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However, to the extent that the factors with small contributions are deleted after rotation to

achieve a derived pc solution, as when k factors are retained in a study of the PCE

obtainable from factor scores using Fa compared to a set using Fd, the entities based on Fa
will have their correlation with the entities based on Fd reduced and the advantage of using

a repeated measure design correspondingly reduced.

While two entities created as 1 by k vectors of factor scores to represent Fa and Fd
respectively are less correlated because the deletion of n - k factors has removed different

parts of the total space, the score vectors corresponding to both entities can be obtained
from transforming the same 1 by k vector of random numbers. The power of the statistical
tests for determining the significance of MPP scores across cells can usually be increased
by using a common Xk for one replication in each cell of the results matrix, when the

number of levels for each treatment are small. On the other hand, the stability of the

estimate of the grand mean, as well as the means of treatments (factors) having a large
number of levels, is increased by the use of independent random vectors to produce each

entity. When the output of MPP standard scores is to be used to conduct a utility study, the

stability of means is of paramount interest.

4. Flexibility in Modeling The Real World

Model sampling is a tool which can provide an investigator capability to control

sources of bias and to make nontraditional assumptions that would not be feasible to apply
if the investigator was restricted to the use of empirical data. Many of the standard
assumptions used in traditional statistical experimental designs and statistical analyses are

essential to the tractability of derivations and/or to conserve or maximize the information

obtainable from scarce data while permitting the use of practical computing methods. Other
models of the real world involving assumptions which conflict with those of the more

traditional ones are equally attractive and could conceivably turn out to be more valid.

Compare the use of synthetic scores created by a model sampling process with the
use of empirical scores drawn from an empirically created data bank to simulate, in both
cases, an optimal classification system. In either case the assignment variables should be
predicted performance (PP) estimates (i.e., LSEs) based on all the predictors. We call

these variables "full least square (FLS) composites." After the assignment variables are
used to optimally assign the entities to jobs, the benefits are measured in terms of mean

prcdicted performance (MPP). FLS composites of the same form as those used for the

assignment variables are used for evaluation--to compute the MPP of the assigned entities
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in each independent cross sample. The investigator should provide independent estimates

of the weights for the variables comprising the FLS composites used for assignment and

evaluation.

The research design summarized above also requires, for the conduct of the

simulation and to compute MPP scores, the use of a sample, or samples, that is

independent of both the analysis and evaluation samples. This is the traditional conc"'-t in

which the validity of a "best" weighted composite is obtained in a different, independent,

sample (i.e., the "cross" sample) as contrasted to the "back" sample on which the weights

were computed. In summary, this research design requires: (1) two "back" samples, one

(the analysis sample) on which to compute the weights for the assignment variables, and 0

one (the evaluation sample) on which to compute the weights for the evaluation variables;

and (2) one or more independent "cross" samples to be used for the conduct of the

classification system simulation and computation of the MPP scores.

A simulation experiment using empirical scores requires dividing the total set of

entities into separate analysis and evaluation samples while holding out enough entities for

use as "cross" samples for the actual conduct of the simulation of the selection-

classification process--unless the investigator has other prior, independent results from

which to derive the required weights. A model sampling experiment has designated

population parameters that are used to generate an analysis sample and to generate as many

cross samples as desired. The investigator using model sampling to conduct his simulation

does not need an evaluation sample, since the evaluation weights are appropriately

computed using the designated population parameters. However, the investigator has the

option of generating an evaluation sample if, for example, he or she wishes to replicate an

empirical study which utilized such a sample.

The most commonly used model for the depiction of classification effects on MPP

is one in which predicted performance scores are substituted for criterion (performance)

scores. The use of this model does not require knowledge of the intercorrelations among

the criterion variables while accurately depicting the relationships among predictors and

between predictors and the criteria. This model appears appropriate for most selection-

classification system simulations. However, alternative theories to be explored through

model sampling experiments may stipulate relationships among the criterion variables,

instead of among predictor variables. The joint predictor-criterion space may then be

defined by extension of the criterion space to the predictor space rather than the more usual
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extension of the predictor space into the criterion space. Model sampling techniques for

implementing such a criterion-based model are described in the Chapter 4 appendices.

T- reliabilities of predictors, either individually or as sets, can be allowed to affect

the characteristics of synthetic scores generated by model sampling. When predictions are

considered as sets (i.e., as operational batteries) alternative concepts of reliabiliy can be

used to generate sets of parallel predictor forms. For example, using a true score plus error

model of the total test score, the error component may, or may not, be correlated within a

set of parallel forms. Either of these alternative models can be readily used as the basis of

model sampling. Details for implementing alternative model sampling procedures for

simulating parallel forms are provided in the Chapter 4 appendices.

F. THE UNIVERSE: HOW TO DEFINE POPULATIONS IN TERMS OF

COVARIANCE MATRICES

1 . Unreliability of Criterion Measures

The first step in defining the population to be used as the basis for generating

synthetic scores is to correct the covariances involving criterion variables for criterion

unreliabilitv. Such a correction is especially important when the criterion is comprised of

several components that have different reliabilities and utility.

A correction for unreliability is easily accomplished as the traditional "correction for

attenuation" when the component is the type of measure where reliability is a function of

the number of raters or the length of a job competency or knowledge test. In such a

measure the criterion used in the validation study is of arbitrary reliability and both the

reason and basis for correcting are clear.

There is another kind of criterion measure for which corrections for unreliability are

0 controversial. The concept of promotability can be defined as the ability of an individual to

perform well at the next higher grade. This underlying capability can be thought of as a

continuous variable which would correlate higher with predictors if it could be more

reliably measured. If the concept is implemented as rated capability to perform at the higher

0 grade, this is certainly true. If it is instead measured in terms of who is actually promoted,

both the methodology for the correction and the justification for making such a correction

come into question.

Thus, we would correct validities and criterion related covariances for unreliability

as the first step in creating values of R, and V or C to define the population on which a
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model sampling study is based. We prefer criterion measures which permit the
computation of reliability measures but recognize that measures such as incarceration,
promotion, or promotion rates, while philosophically not perfectly reliable measures of the 0

underlying variable, do not lend themselves to a correction for attenuation.

2. Selection Effects

We do not believe it is conservative to use sample covariance values as

representative of the population without applying corrections for selection effects. There

are many ways that the relationships among and between predictors and the criteria can be
distorted by the effects of restriction in range. The need to correct sample values for
restriction in range should be particularly obvious when the results of many validity studies
are being combined to provide relationships between experimental predictors and LSEs

across all jobs. In these cases, each sample used foi validation will have different selection

effects.

It is well known that when an operational battery is used to reject a significant
number of applicants, the restriction in range effects will be more severe on these explicit

selection variables than on those variables that are restricted only because they are

positively correlated with the operational tests. In such a situation it is essential to use
separate formulae for correcting the explicitly and incidentally selected variables. If no

correction is used, or the same correction formula is used for all variables, there would be
frequent replacement of operational tests with other tests that are not actually superior in an

unrestricted population.

When operational tests have less of a role in selecting applicants than the interests
and other self selection mechanisms exercised by the applicants, the designation of

operational tests as explicit selectors will distort the validation results in favor of the
operational tests to the disadvantage of new test content not already represented in the
battery. Olson (1968) reports experimental data which show that applying such a model to
the correction of the ACB provides too small a correction to experimental noncognitive
tests (the measures believed to be most affected by self selection), making them less likely

to be included in the operational battery.

Model sampling experiments can make use of data compiled from several sources.
Also, the investigation of strategies for future research may call for using correlation
matrices as an estimate of the population parameters that include biserial or tetrachoric

coefficients, and/or coefficients based on patchwork samples with widely different Ns for
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different cells in the correlation matrix. Under such circumstances care must be taken not

to correct biserial correlation coefficients as if they were product moment coefficients
0 (biserial coefficients may be inflated by a restriction in range and should be inflated further

by an improper correction), nor should an assembled matrix of coefficients be designated

as the population matrix before being adjusted to assure that the matrix is positive

semidefinite.
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APPENDIX 4A
RESEARCH DESIGN ISSUES IN MODEL SAMPLING

EXPERIMENTATION

APPENDIX 4A.1: INTRODUCTION AND NOTATION

This appendix introduces and provides an initial, integrative, discussion of the
methodological issues and techniques that are described in Appendices 4B and 4C.

Material is placed in these appendices instead of the text because of their technical
complexity and/or to provide additional detail not essential to the understanding of the

chapter text or the evaluation of the Army classification system (Zeidner and Johnson,
1989b). We do not hesitate to express simulation techniques in the matrix algebra notation
most useful for application and also make use of matrix notation to show the relationships

between alternative approaches. Formal proofs are avoided.

The notation used in the appendices for this chapter follows:

N = number of individuals or entities (synthetic individuals) used in a sample
or group of entities considered together for selection and/or assignment
purposes.

n = number of predictor variables.

m = number of jobs to which entities are to be assigned after selection and/or
classification.

Xn = N by n matrix of normal deviates (synthetic scores); E((Xn' Xn)/N) is
equal to an n by n identity matrix (In). Xm will be similarly used to
denote an N by m matrix of normal deviate scores.

Y = N by n matrix of synthetic predictor scores (usually selection-
classification tests) in standard score form; an underlined capital letter in
bold print signifies that each score has been divided by the square square

0 root of N.

Zu = N by n matrix of criterion scores generated as synthetic normal deviates in
standard score form.

R, = ((Y'Y)/N); an n by n matrix of correlation coefficients among the
0 predictor variables. Using alternative notation, Y' = Rt.
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Yj = An N by n matrix of predictor deviate scores in joint predictor-criterion
space. These variables have the same correlations with the criterion
scores as do the predictor scores making up the Y matrix but have
reduced standard deviations and different intercorrelations.

Cj ((Yj'Yj)/N); an N by N matrix of covariances among the predictor
variables in the joint predictor- criterion space. This matrix has the same
relationship to the predictor variables as CP has to the criterion variables --
both relate to a set of variables existing empirically in a larger space (e.g.,
test space or criterion space) whose covariances are expressed in the joint
predictor-criterion space.

Sj = An n by n diagonal matrix with the same diagonal elements as Cj; these
non-zero elements are the variances of the predictor variables in joint 0
space.

Rj = Sj- 1/2 (Cj)Sj- 1/2 ; an n by n matrix of intercorrelations among the
predictors in joint space.

Z = An N by m matrix of predicted performance (PP) deviate scores; each PP 0
variable has a standard deviation (SD) equal to the multiple correlation of
the specified set of predictor variables with the corresponding criterion
variable.

Cp = ((Z'Z)/N); an m by m matrix of covariances among the PP scores; the
diagonal elements are multiple correlation coefficients.

Sp = An m by m diagonal matrix whose diagonal elements are the same as the
diagonal elements of Cp.

Rp = Sp-1/ 2(Cp)Sp-l/2; an m by m matrix of correlation coefficients among the
PP variables; the intercorrelations among the criterion variables in the joint
predictor-criterion space (compare with Rj).

Ru = An m by m matrix of intercorrelations among criterion variables.

V = an m by n matrix of correlation coefficients between predictor and
criterion scores; V = Zu'Y; the same results are obtained if PP scores are
substituted for criterion scores: V = ((Sp-'/ 2 Z'Y)/N) = ((Sp- 1/2
(Z'Yj)SJ- 1/2 )/N); this is the validity matrix. Q = An N by k matrix of
factor scores (expressed as standard scores).

APPENDIX 4A.2: RESEARCH DESIGN ISSUES

Chapter 4 appendices focus on research designs directed at the evaluation of
alternative selection-assignment policies that can be described in terms of actions taken on
entity samples drawn from universes defined in terms of Rt and V. In the kind of model
sampling experiments we envisage, investigators will usually make use of the supermatrix:
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or, much more rarely,

In studies where the benefits side of utility is calculated from mean predicted

performance (MPP) resulting from the implementation of each policy, there is no need to
know the covariances among actual criterion scores. However, we briefly consider an

alternative model in which knowledge of Ru is available and useful.

Sets of predictor and criterion scores generated from universe values of R, and V
can be assumed to be: (1) universe values, (2) analysis ("back") samples used to select

variables and compute weights to apply to decision variables of simulated systems,

(3) evaluation samples used to compute weights for evaluation variables to apply to cross
sample scores, or (4) the independent ("cross") samples that provide the predictor scores to
which the various weights or other parameter values are applied. Some psychometric

studies may require only one or more samples that can be assumed to be best estimates of
the universe. However, the comparison of alternative personnel policies will usually
require more complicated research designs to prevent the biasing of results by correlational

error (as betweem LSEs of predicted performance used as assignment versus evaluation

variables).

0 A basic research design calls for using a value for R, and V to generate a set of Y
and Z matrices from which the analysis sample values can be computed. Weights to be

applied to selected cross sample predictor scores to provide LSEs of PP scores to be used

as decision variables (e.g., for selection and assignment) are contained in an n by m matrix,
10 W a . Similarly, the weights to be applied to the same cross sample predictor scores to

provide FLS estimates of PP scores to be used as evaluation variables are contained in an n

by m matrix, We. We can compute these matrices as: Wa = Ra - 1 Va', and We = Rte- 1

Ve'. In each cross sample the policy decisions can be made on simulated decisions made
on the basis of YWa, and the results measured in terms of predicted performance scores
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computed from "universe" or evaluation sample values to compute We (to apply to cross

sample values of Y to yield Ze = YWe.

Some of the research questions that could be answered using the above model

sampling research design include:

(1) Which technique is best for selecting predictor variables (e.g., for selecting
operational selection-classification batteries, for selecting sets of test
composites and corresponding job families)?

(2) Which personnel system characteristics are most efficient (e.g., equal versus
disparate variances for aptitude areas, quality distribution across job families,
sets of prerequisite or cutting scores)?

(3) Which selection-classification algorithms (processes) have the most positive
effect on MPP (e.g., one versus two stage selection-classification systems, use
of MDS and/or person-by-person assignment algorithms)?

The "cross" samples of entities can be used in repeated measure analysis of variance

designs to obtain maximum sensitivity to policy effects. Or conversely, since the model

sampling approach permits the generation of an unlimited number of completely

independent samples, the investigator can afford to use completely distinct, independent,

samples across conditions whenever he so prefers.

Where LP algorithms are used to optimally assign entities to jobs, it will usually be

practical to make use of several replications of relatively small samples, possibly an N of

between 200 to 300 when m < 15. There is considerable evidence that twenty samples of

N = 200 provides alsmost as much stability as a single sample of 4,000, but the cost of

optimally assigning 4,000 entities to 9 job families in a single solution is many times over

that of making 20 such solutions in samples of 200 each.

The identification of values for R, and V to define a desired universe will usually

require correcting empirically obtained correlation coefficients with restriction in range

(correction for selection effects) formulae. Depending on the study, the described universe

may consist of the youth, applicant trainee, on-the-job, second term, or career populations.

Th-_ empirical data will usually have been collected on a sample drawn from the on-the-job

population.

Some of the above topics will be explored in more detail in the remaining

appendices of this chapter. The generation of predictor, factor, and PP scores will be

described in Appendix 4B. The independence of policy decision and evaluation variables

will be explained further in Appendix 4C.
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APPENDIX 4B
GENERATING SYNTHETIC SCORES

APPENDIX 4B.l: GENERATING PREDICTOR OR PP SCORES FROM
Xn OR Xm

The objective of a model sampling experiment might be to determine which of

several sets of predictors will provide the maximum amount of MPP under the condition of

optimal assignment. If the investigator makes the assumption that he knows the parameters

of the universe (defined by Rt and V), the model sampling experiment becomes a substitute

for being able to analytically solve a set of definite integrals of a multivariate normal density

function. In this case these functions would have Cp as a parameter. The experiment

would thus be a means of solving an otherwise implacable mathematical problem.

Since the personnel operations being simulated include optimal assignment, an
objective function (i.e., MPP) is maximized in each such replication. In contrast to the
more general research design described in Appendix 4A.2, this objective function produced

as a product of the assignment algorithm (the allocation sum or NMPP standard score) is also

the estimate of MPP used as the evaluation variable used as the benefits component for

computing utility.

In many, if not most, such designs each experimental condition can be represented

by a particular m by m matrix Cp. Assuming the more difficult circumstances of m < n, an

economy of effort can be achieved by the generation of the cross sample Z matrices used

for both assignment and evaluation from Xm rather than from X,. Using the principles

and relationships described in the Chapter 2 appendices, we can define Z in terms of the

following sequences:

First Sequence

0 Z = YW; Y = X, R1
1/2; W = Rt-1 V'; thus

Z = Xn Rt1/2 Rt1 V' = Xn R1- 1/-2 V', and (la)

where At D, A,' = R1, and AtAt' = At'At = 1,

0 Z = Xn (V A, Dl- 1/2)' = Xn Dt-1/2 At'V'. 0 b)
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Second Sequence

Z = Xm Cp I/2 , and considering that: (2a)

Cp = FvFv' = FpFp', where F, is an m by n factor extension of Ft into the joint

space, and Fp is an m by m PC factor solution of Cp, and

Fv Ap = Fp, where Ap'(Fv'Fv)Ap = Dp, then,

Z = Xm (Fv Ap)' = Xm Ap'Dt- 1 /2 At'V'. (2b)

It is readily seen that the Z matrices resulting from the above two sequences both
have the relationship that E((Z'Z)/N) = Cp. It is clear that either sequence can be used for

a model sampling experiment in which samples are drawn from the universe to make 0
mathematical computations. When parameters from independent analysis and evaluation

samples (e.g., Wa and We) are to be used, it is necessary to use either the first sequence or

the third sequence to be described below.

When n is considerably larger than m, there can be practical value in using Xm 0

instead of X, to first create predictor scores, apply Wa to cross sample predictor scores as

a means of creating LSEs for use as assignment variables, and then applying We to the

cross sample predictor scores for use as evaluation variables. We will demonstrate the

feasibility of using Xm to generate predictor scores in the joint predictor-criterion space for

use in creating separate Z matrices for use in: (1) the simulation decision process, and

(2) the evaluation process.

APPENDIX 4B.2: GENERATING SCORE MATRICES FOR PREDICTOR 0
VARIABLES IN THE JOINT PREDICTOR-CRITERION SPACE

The N by n matrix of predictor scores in the joint space is denoted as Yj. By

definition, ((Yj'Yj)/N) equals Cj, the covariances of the predictors in the joint predictor
space. Defining Sj as a diagonal matrix whose non-zero elements are the diagonal

elements of C, we can define Rj as Sj- 1/2(Cj)Sj-I/ 2 , and YJ1 = Yj Sj-1/2; thus, (YJI'
YJ 1)IN = Rj. Also, V' = (S1-1/ 2(Yj'Z)Sp-1/2 )/N), where Sp is the diagonal matrix with

the same diagonal elements as Cp.YJI Wa = Za, providing the PP scores used as

assignment variables and the equation YJ 1 We = Ze, provides the PP scores used to

compute the MPP standard scores used for evaluation.

To make use of development logic provided in the appendices of Chapter 2, we first

substitute Fp' for Cp 1/2 in formula (2a) as the means of transforming Xm into Z, thus
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providing formula (2b). The factor extension of Fp into the predictor space can be

expressed as:

[ T [Z] (3)

The n by m matix T can be developed sequentially as follows:
iLl - - F t F~ VF tp-

[s T, = [2] L2] T2 = ....

T = T1T 2, an n by n by an n by m matrix yielding an n by m matrix as a product.

In this example F t is the PC factor solution of Rt; Ft = Rt A, Dt- 1/2, where

A,'RAi' = D1, At'At = AIAr' = I,, and Dt is the n by n diagonal matrix of eigen values.

T 1 is equal to AiD/- 1)-, as explained in the Chapter 3 appendices. We define T2 to be Ap,

where Ap is the eigen vector matrix and Dp is the eigen value (diagonal) matrix found in the

unique equality, Ap'(Fv'Fv)Ap = Dp, where Ap'Ap = Im and ApAp' definitely does not

equal I, (Ap is an n by m orthonormal matrix); Fp = FvAp. We see that F, is an m by n

extended factor solution, in the sense of Dwyer, and (Fv'Fv) is an n by n matrix with rank

m (i.e., can be completely described by m factors).

As noted above, T is equal to T 1T 2 or A t Dt- 1/2 Ap, an n by m matrix. Ftp,

obtainable as Rt T, is an n by m factor solution such that Xm Ftp' yields Yj, in N by n

matrix of predictor deviate scores in the joint predictor-criterion space. The scores in Yj
have many of the critical characteristics of the predictor scores in test space, including the

relationship ((Sj- 1/2Z'YjSj-1/'2)/N) = V, that is, these predictor scores in joint space have

the same correlations with the criterion scores as do the predictor scores in test space.

However, the relationship of Yj to Y is a complex one and needs to be explored

systematically. We describe how these two sets of predictor scores are different and where

they can be expected to provide the same results.

In considering the effect of using Yj instead of Y we begin by defining Vj as the m

by n matrix of correlation coefficients between PP scores and predictor scores when we

substitute Yj for Y; we then define Rj as in formula (5):
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Vj = FpFtp'; Fp = V Rt-I Ap; Ftp = R t1/2 Ap

Vj = V Rt- 1/2 (ApAp') Rt1/2 (4)

Rj = Ftp Ftp' = Rt1/2 (ApAp') Rt 1/2  (5)

Before proceeding further, we need to consider some of the special properties of the

matrix (ApAP'). If the product of a matrix with itself equals that matrix, as in the equality,
M 2 = M, then M is an idempotent matrix and it is easily verified that the generalized

inverse of M (i.e., M*) is equal to M, since M = M M* M when M = M*. While

(ApAp') is not the identity matrix, as is (Ap'Ap), the matrix (ApAp') is idempotent--

almost, but not quite, as useful a property.

Since Rj is of order n with rank m and m < n, this matrix does not have an ordinary

inverse; we do not have recourse to the matrix (Rj)- 1 . However, the generalized inverse,

(Rj)*, does exist and looking at our formula for Rj we see immediately that we can write
this generalized inverse as Rt-1/2 (ApAp') Rt7I/2. We noted above that (ApAp')* equals

(ApAp'), and thus:

Rj* = Rt--/2 (ApAp'0) RC1/2 (6)

The product of Rj and Rj*,i.e., Rj Rj* is seen to be equal to Rt+1/2 (ApAp') Rt-I/ 2.

Returning to equation (4) we note that this expression for Vj can be written as follows:

Vj = V (Rj)* Rj ,and Vj' = Rj (Rj)* V'

We can now write: Rj* V'= Rj* (RjRj* V') = Rj* V', since by the definition of Rj*,

Rj* = Rj* Rj Rj* (as well as Rj = Rj Rj* Rj).

We can also compare the two expected covariance matrices produced by changing

the regression weight matrix, W, in the expression E((Z'Yj1 W)/N). In the following two

developments we compare the expected PP covariance matrices for W = (R)- IV' with W

= (Rj)-IV'.

Firstly, when W = RrIV' we have:

E(Z'Yji Rt-1 V') = V Rt- 1/2 (ApAp') Rt+1 /2 Rt1 V'

= V Rt-1/2 (ApAp') Rt-l"2

= V Rj * V1

Secondly, when W = Rj* V' we have:
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E(Z'Yj1 Rj* V') = V Rt- 1/2 (ApAp') Rt+ 1/2 Rj* V

Rj* = Rt- 1/2 (ApAp') Rt - 1/2

E(Z'Yj1 Rj* V') = V (Rt - 1/2 (ApAp') Rt-I/ 2 )V'

-- V (R j" )V'.

Our third sequence, as provided below, can be used in research designs where:

(1) one set of estimates of PP scores or other decision variables are computed for

simulation of personnel system or policy decisions; and (2) a second set of independent

estimates are to be used in the evaluation of the simulation effects resulting from the

simulation.

Third Sequence:

Yj = Xm (T'Rt); T'Rt = Ap' Dt- 1/ 2 At' (7)

Z = Yj (Sj)-1/2 Wj : Wj = (Rj)- 1 V' (8)
0

The Yj matrices generated for "cross" samples by formula (7) are appropriately obtained

using values for T'Rt computed from the universe values of Rt and V, while the weights

to be applied to these "test" scores should be computed in an independent analysis sample.

The Z matrices resulting from formula 8 are computed for each cross sample using either

the universe analysis or evaluation sample values of Rt and V as appropriate for the

research design (see Appendix 4C).

APPENDIX 4B.3: GENERATING FACTOR SCORE MATRICES
COMMENCING WITH EITHER Yj OR Y

The third sequence can be readily extended to generate an N by k matrix of rotated

factor scores. The factor solution of Cp, Fv can be rotated to alternative solutions (e.g., to

0 simple structure), to show the correlation of each of the m PP variables with the k rotated

factors of Fvr. The transformation matrix relating Fp to Fpr is Tr , that is, Fvr = Fv Tr.

The correlations of the predictor variables with these rotated factors is denoted as Ftr,

where F, Tr = Fir.

* The following formulae are repeated here for ready reference during the derivations

and demonstrations of this section.

Ft =R 1/ 2  ; Ftp =Ft Ap.

*Fv =V Rt - 1/2  ; F=Fv Ap.
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Yj = Xm (Ftp)' ; YJ1 = YJS - 1/2 ; [(YJi)' YJ1]/N= Rj.

The desired matrix of factor scores, Qr, can be generated either from Xn or from

Xm as follows:

Generating factor scores from Xn:

Qr = Y Rt- 1 Tr, or in terms of Xn,

Qr = Xn Ft'Rt-Tr, which in turn reduces to,

Qr = Xn Rt-1 /2 Tr; when factors are to be defined in terms of predictor variables in
"total test space"; (9a)

Generating Factor Scores From Xm:

Qr = YjI Rj* Rtl/2Tr, or in terms of Xm,

Qr = Xm Ftp'Rj* Rtl/ 2Tr, which reduces to,

Qr= Xm Ap' Tr, when factors are to be defined in terms of predictor variables in

"joint predictor-criterion space". (9b)

When Tr = Ap, Qr = Xm. It is readily verified that (Qr'Qr)/N = Im, (Z'Qr)/N = Fp, and

(YJ'Qr)/N = Ftp, when Qr is equal to Xm. We next investigate the general case, when Tr

does not equal Ap, and demonstrate that all three of the desired properties hold in the

general case.

An N by k matrix of factor scores, Q, should have (or closely approximate when

k < m), the following properties:

E[(Q'Qr)/N] = Ik ,or equal to Rq if rotation is to oblique factors (10)

E[(Z'Qr)/N] =Ftr = V Rt 112 Tr, where F, = FvTr (11)

and Fir = Ft Tr.

E[(Y'Qr)/N] = Ftr = Rt1 /2 Tr (12)

We suggest defining the factor scores in terms of either Y or Yj; a particular Qr can

be either equal to (Y Rt- 1 Ftr) or to (Yj Rj* Ftr) with Ft, equal to FtT r. Since the

credibility of using Y is in little doubt, where Y = Xn Ft', we demonstrate the adequacy of

a Qr based on Yj, a parallel demonstration of the adequacy of a Qr based on Y would

follow similar lines but would be much easier to produce, since the regular inverse is

available for use in simplifying algebraic expressions.
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Commencing with Qr = J Rj* Ftr, we can readily first expand and then simplify

the expression for Qr'Qr/N as follows:

[(Qr'Qr)/N] = Ftp' Rj* Rj Rj* Ftp

= Ftp' Rj* Ftp

= A'R 2tl/(Rt - 2 (ApAp') R- 1/2 )R 1
/ 2 Ap, first collapsing Rtl/ 2

Rt- 1/2 into In, and then Ap'Ap into In, we simplify this total

expression to In.

[(QpQp)/N] = In, the first of our three desired properties.

Noting that Z = YjRj* V', Qr = Yj Rj* Ftr,and Ftp = R1/ 2 Ap, we now expand
and then simplify the expression for Z'Qr/N as follows:

[(Z'Qr)/N] = (VRJI* (YjI'Yji) RjI* Rt 1/2 Tr)/N

= V (RJI* Rj1 RjI") Rt1 /2 Tr;

= V Rt - 1/ 2 Tr = Fv Tr = Fr.

I(ZI'Qr)/N = Fr, and the second of the three desired properties in a matrix of

factor scores is shown to be present.

The third desired property is shown in the following sequence to be also present in

a Qr generated fron Yj:

[(Yjl'Qr)/N] = (YjI'YjI RjI* Ftr)/N

= (Rj 1 RjI*) Fir = (RjI RjI*) Rt1"2 Tr
= (Rt+ 1/2 (ApAp') Rt - 1/2 )Rt 1,'2 Tr

[(YjI'Qp)/N] = Rt 1/2 Tr = Ftr.

All three of the desired properties are present for a Qr defined as being equal to Yj

RjI* Fir. Thus these desired properites of a Qr matrix are possessed by any orthogonal or
oblique rotation applied to either Ft, Ftp or directly to Qp or Qr.

We see that factor scores based on either Y or Yj can possess the desired properties
of factor scores. The generation of either Q matrix is quite simple, since Y = Xn Ft' and
Yj = Xm Ftp', Qr can be generated by either formula (9a), based on Y or on formula (9b),
based on Yj. When n > m , there is a small economy effected by using Xm instead of Xn.
However, the primary advantage derived from being able to generate factor or other
predictor scores, as well as PP scores and/or criterion scores, from the same Xm matrix is
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that some simulations may require the direct generation of criterion scores. A matrix of
criterion scores, Zu, as contrasted to a matrix of PP scores, Z, cannot be obtained as a
function of the predictor scores--instead, a Zu matrix must be generated from Xm and it is 0

essential to generate the predictor and criterion scores from the same Xm or X,, (in this

case it must be from Xm).

APPENDIX 4B.4: AN APPROACH THAT USES THE 0
INTERCORRELATIONS AMONG THE CRITERION VARIABLES

The purpose of this section is to compare the meaning and usefulness of two

alternative sets of variables--measures of predicted performance as compared to actual
performance. While actual performance measures on several jobs for the same individual

would be very rarely obtainable, hypothetical criterion universes might be credibly
formulated for use in simulations. The use of either predicted performance or actual

performance considered here emphasize the joint predictor-criterion space. The two
alternatives being considered are: (1) the identification of factors in predictor space that are 0

then extended into the criterion space, or (2) the identification of factors in criterion space

that are then extended into the predictor space.

We believe the most useful approach to the conduct of model sampling research on

the utility of selection and classification relates to the first of the two factor solutions shown
below. However, the second of these two, an alternative model, can be used when the
investigator is able to stipulate the correlations among the criterion variables and wishes to

use this m by m matrix of correlations among these variables, the matrix Ru, as the basis for

computing the utility of personnel policies.

Primary Model:

FaFa' , F•
V F,

Alternative Model:

FbFb= .F] Fb=[

4-34

S

-j



An N by m matrix of actual criterion scores is denoted as Zu and an N by n matrix of

predictor scores in the joint predictor-criterion space is called Yj.

Xm (Fu'l Fj') = (Zu I Yj); (Yj I Zu)'(Zu I Yj ) = FbFb'.

Using the same Xm matrix as above and the transformation matrices described

below, the relationships across the variables in Zu, Z, and Yj are preserved, as if the

scores for all of these variables were obtained on the same sample of individuals. The Zu

matrix should be used only for evaluation of simulation results, while simulation decisions

should be made on the basis of Z and/or Yj. Formulae for generating these three sets of

variables are as follows:

Zu = Xm Ru1 /2  (13)

Z = Xm (V Rt-1/2' (14)

Yj = Xm (Ftp)' (15)

APPENDIX 4B.5: GENERATING SETS OF PARALLEL FORMS

It is shown in Appendix 4C that the ability to generate two sets of parallel predictors
with prescribed correlation coeficients between each pair of parallel forms can be the first

step in the determination of the unbiased validity of a complexly determined predictor

composite. It is difficult to otherwise obtain an unbiased estimate of the validity, and the

standard error of estimate of this estimate, in cross samples. Obta.ning these estimates is

facilitated by (and/or probably requires) a model sampling experiment involving parallel
forms when the development of predictor composites has included such procedures as

selection of predictors for inclusion and the best weighting of these selected variables.

The prescribed correlation coefficients between parallel forms are, of course, one

type of reliability coefficient. Although test developers frequently attend only to the

relationships between pairs of parallel forms, when there are two sets of parallel forms the

matrix of correlations between the two sets of parallel forms is relevant to their expected

behavior in cross samples. Thus, we define a matrix RL whose diagonal elements are the

reliability coefficients, rii, and has the relationship to R, indicated in the following equation:

R Lt ........

L R,_
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where R, and RL are both n by n matrices. Different approaches to the creation of two sets

of parallel forms will result in different values for the off diagonal elements of RL,

although the diagonal elements always consist of the reliability coefficients (rii). We

describe three different approaches for generating parallel forms such that,

[(YLa I YLb)' (YLa I YLb)/N] = Rt.

Each approach implies a different concept of what constitutes sets of parallel forms. 0

We first describe a method of generating parallel forms which assumes that the

elements of Rt are the correlations among true scores. Under this assumption the matrix

RL is equal to Sr Rt Sr, where Sr is a diagonal matrix whose diagonal elements are the

square roots of rfi. That is, the off diagonal elements of RL are equal to (rii) 1/2 (rij)(rjj) 1/2

and the diagonal elements are equal to rii.

Denoting the factor solution of Rt as the 2n by k matrix Ftt, we can say that by

definition, Ftt Ftt' = Rtt. Thus the N by 2n matrix of parallel predictor scores, (YLa I

YLb), can be generated from the relationship , X2n (Ftt)' = (YLa I YLb). These parallel

sets of predictor scores are based on a traditional model of reliability and parallel forms

which assumes that the Spearman-Brown formulae applies to the relationships of

correlations between pairs of variables and their respective reliabilities.

Another model of parallel forms can be described by defining Ft (the correlation

between corresponding measures in the two sets of parallel forms still equal to rii) is as

follows:

F 0 S

Ftt =

where 0 is an n by 1 matrix of zeros, SL is a diagonal matrix whose diagonal

elements are equal to (1 - rii) 1/2, and FL is as described below.

RL is equal to Rt - (SL) 2 , and FL FL' = RL. We generate YLa and YLb using

three separate N by n matrices of random normal deviates: XL, XLa, and XLb. We can

generate these two sets of parallel forms as shown below:

YLa = (XL I XLa) (FL I SL)' (16a)

YLa = (XL I XLb) (FL I SL)' (16b)
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It is readily seen that in this approach RL is equal to Rt with reliabilities replacing

ones in the diagonals, and thus FL is the traditional n by k initial factor solution in reliable
space as contrasted with the solution in total test space utilized in the previous approach.

The difference between (FL FL') and Rt is assumed to be due to the error variance in the

latter. The off-diagonal elements of the intercorrelations among predictors within the same

set of parallel forms are accordingly equal to those found in the intercorrleations among

tests across sets of parallel forms. This is the approach to be used when parallel sets of

factor scores based on factors defined in the reliable space are to be generated, or if all the

parellel forms are independently developed and only later randomly assigned to a particular

set.

As noted above, test developers frequently pay attention only to the values in the

diagonals of RL, in addition to the values of Rt and V, in making a determination of
whether two sets of predictors are sufficiently parallel. Sets of parallel forms developed

under widely different conditions with respect to time, criteria, sample characteristics, etc.,

can have significant sources of error that creates an error variable correlated within the set,

although uncorrelated with all other variables external to the set. Parallel forms can be

generated which have this pattern of correlated error by defining RL as follows:

* -u=F,. :10]::o
Ftt=

where L is an n by 1 matrix whose elements are equal to the corresponding diagonal
elements of SL, and RL is defined as (Rt - LL'). The same N by n+2 matrix of random

normal deviates, X, 2 , can be used to generate YU and YLb as shown below:

Xn+2 (FLa)' = YLa; FLa =(FL I L 0); (17a)

Xn+2 (FLb)' = YLb; FLa = (FL I0 I L); (17b)

E[(YLa'YLa)/N] = E[(YLb'YLb)/N] = Rt;

E[(YLa'YLb)/N] = RL
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APPENDIX 4C

RESEARCH DESIGN CONSIDERATIONS: SOME
APPROACHES ESPECIALLY RELEVANT TO

MODEL SAMPLING EXPERIMENTATION

In this appendix we consider a number of research design issues of special

importance to the application of model sampling experimentation to the study of the effects

on MPP of specific personnel policies or of assignment-classification methodology. The

concept of using independent analysis and validation samples is not sufficient to control

such biasing factors as predictor selection and/or provide accurate estimates of the standard

error of estimate of the MPP resulting from personnel system policies. We have the

means, through the use of model sampling techniques of controlling sources of bias that are

left untouched in traditional empirical studies involving limited numbers of applicants or job

incumbents that can be tested and evaluated, and divided into independent "back" and

"cross" samples.

The ease with which the generation of analysis, evaluation, and cross samples, as

well as sets of parallel forms of predictors and perturbed sets of utility measures, can be

accomplished provide feasibility to the use of new creative research designs. We propose

0 using the ease with which so many completely independent and representative samples of

synthetic entities can be readily generated, to both control and measure effects of each type

of bias.

We consider several types of bias we believe to be of particular interest to

* investigators of utility in personnel selection and classification. We first examine the

following sources of bias:

(a) Cross sample shrinkage of selected and optimally weighted predictor
composites--this bias source includes selecting of tests for inclusion in a

* composite prior to the "best" weighting of these tests to form a test composite.

(b) The presence of correlated error due to optimal weights obtained from the same
"back" sample being used to define: (1) selection, assignment or other
personnel system decision variables serving as independent variables in a
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model sampling experiment--as well as (2) being used to define the evaluation
variable from which MPP is computed.

(c) The use of job "value" weights derived for computing performance benefits
(for inclusion in a utility estimate) in the determination of scores for selection,
assignment, and other decision variables; there is obviously something suspect
in the inclusion of the dependent variable as one of the decision variables.

The control of the first of these bias sources can significantly increase the utility of 0
operational procedures. The latter two have their primary importance in their potential for

the erroneous inflation of utility estimates.

The first of our three bias sources is evidenced by the traditional shrinkage of
multiple correlation coefficients when "best" weights are applied to scores in samples

independent of the analysis samples on which the "best" weights were computed. The

formulae for obtaining an estimate of the expected, unbiased validity of the "best" weighted

composite in an independent sample will, of course, be applicable only when certain

assumptions are met. The best known one, as proposed by Wherry (Catlin,1980),

assumes that the "best" weights were computed in the universe, rather than in another

independent sample drawn from that universe. The results of such a formulae are

appropriately compared with a model sampling experiment in which the regression weights

are computed using the values of Rt and V designated by the investigator as defining the

universe. These universe weights are applied to scores of entities generated from the

designated universe for as many cross samples as desired, and good estimates of both the

expected, unbiased validity and the standard deviation of these estimates across samples are

available.

None of the shrinkage formulae provide good estimates when test selection has

preceded the computation of regression weights. In a model sampling experiment to

determine shrinkage under conditions that include test selection, the test selection

procedures and computation of weights should be computed using successive independent

samples of entities.

Methods for adjusting regression weights to compensate for the effect of sampling

error has the effect of reducing the range (i.e., variance) of the weights across predictors.

One such method is called ridge analysis (Draper and Van Nostrand, 1979). The benefits

of using such adjustments cannot be evaluated by comparing in each cross sample the
validities of composites defined using different methods of adjusting weights computed
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from a number of different analysis samples. A model sampling experiment cannot help in
the obtaining of better estimates of the universe parameters.

It might appear that a reasonable goal for adjusting regression weights would be to

obtain both the largest mean validity and the tightest cluster of estimates around die mean
validity. Unfortunately neither of these goals is obtainable from regression weight

adjustment methods that rely on reducing the differences (causing a flattening effect) among
regression weights within a composite. The formulae for adjusting regression weights by

making them more similar across the independent variables provides a means of changing

the estimated universe values, not a means of reducing the shrinkage of validities in cross

samples.

While an investigator could use model sampling to produce similar adjustments to

regression weights as would be produced by these formulae, we would not expect the
model sampling results in independent samples to show a reduction in shrinkage. The

lower validity obtained in cross samples would be the result of lowering the magnitude of
the "back" validity, usually by systematically increasing the effect of the renral factor at

the expense of the group factors. Thus, the use of these formulae in personnel research
falls under the heading of how to best estimate universe parameters rather than how to

correct for shrinkage effects.

An adjustment (we hesitate to call it a correction) for inflated differences among

regression weights computed using empirically obtained estimates of universe values for Rt
and V is obtainable by providing parameters for producing factor scores from one

0 independent sample (Y(ROlFtt = Qt) and then computing the regression weights for

predicting performance from these factor scores (QtWt' = Z) on a second independent

analysis sample. The conversion of regression weights for factor scores to regression
weights for personnel tests would in itself have the effect of flattening, reducing the

0 variance of, the regression weights, because of the reduction in the dimensionality of the

joint predictor-criterion space.

The effect of computing weights on one set of parallel forms to be applied

operationally on the other set in independent samples can also be readily evaluated in a
model sampling experiment (see Appendix 4B.3 on the generation of sets of parallel

forms).

We have repeatedly emphasized the importance of producing as the final output of a

model sampling experiment an estimate of MPP based on all information available to the
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experimenter. This MPP is the average predicted performance (PP) resulting from the

decisions made in a simulation of portions of a personnel system.

The sample on which the parameter values required to compute PP variables for

evaluation purposes, that is to compute the final MPP standard score, is called the

evaluation sample, although th,; actual evaluative results are obtained from applying these

parameters to synthetic scores generated for inclusion in a "cross" sample.

In some model sampling experiments the investigator can assume that the universe

parameters are completely known and the experiment is thus a means of solving a

mathematical problem that currently eludes solution by analytical means. However, when

research objectives require consideration of inflated relationships due to test selection, best

weighting of predictors, or other decisions that capitalize on sampling error, the elimination

of correlated error present in both decision variables and evaluation variables becomes an

important aspect of the experiment. Since such correlated error will result when the

parameters defining decision variables are computed on the same analysis sample as the

parameters defining the evaluation variables, this type of correlated error is eliminated by

assuring that selection, weighting, etc., for decision and evaluation variables are

accomplished on independent samples.

In most model sampling experiments relating to the utility of selection and

classification of personnel it is very important that the same estimate of PP be utilized as the

evaluation variable, regardless of the experimental conditions or the different variables (the

selection and assignment variables, etc.) that may be utilized in the implementation of the

various experimental conditions. When one of the decision processes being simulated is

optimal assignment of personnel to jobs, it is generally inappropriate to use the objective

function (i.e., the variable being maximized, frequently called the allocation sum in dual LP

programs for assignment of personnel) as the measure of MPP. Instead, the overall "best"

estimate of PP should be used to compute MPP at the end of the simulation of the

personnel decision processes--independently of the variables used in the selection.
assignment, and other decision processes of the simulation.

The steps of a model sampling experiment can be divided into three parts that will

often require independent samples for their implementation. The estimates of Rt and V

designated as universe values should be used to compute the post multipliers of X to

generate the synthetic scores for predictor, criterion, and other decision variables for use in

the cross samples. One or more independent "analysis" samples are used to compute the 4
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parameters that are applied to cross sample scores to produce unbiased estimates of

predictor composites (selection and assignment variables) and other system decision

variables (e.g., for determining promotion, length of training, school grades, attrition, etc.)

In methodological model sampling studies where alternative methodologies or

policies are being compared, it makes sense to to use the "universe" sample as the source

of evaluation parameter values. On the other hand, when the objective af a model sampling

experiment is to provide a statistical basis for interpreting the results of an empirical
research study, the investigator will wish to closely emulatc the division of available

empirical data into independent samples, drawing separate analysis, evaluation and cross
samples of entities of the same size and structure as in the empirical study; additional cross

samples or larger cross samples are of course available to provide greater precision and can
be used without disturbing the closeness with which the empirical study is replicated.

The most perplexing research design issue relating to the conduct of studies to
estimate utility, for either analytical, empirical or potential model sampling experiments,

arises when separate values are placed on performance in each job. In such studies, the

evaluation variable has usually been a function of job predictability (validity), performance
value for each job, and some measure of the performance spread of incumbents (possibly,

the standard deviation of job performance in dollar terms, or SDy). In future model

sampling experiments the evaluation variable would most likely be the MPP for each job
multiplied by the dollar value of performance at that level.

Selection and assignment decisions are often made on the basis of the predictability
and value of jobs (sometimes directly and sometimes by making the standard deviation of
predictors proportional to their validity), as well as the magnitude of each individuals test

composite scores. Very often, a high percentage of the utility accruing to a personnel
system component is due to the presence of the same job value scores as components in

both the decision and evaluation variables.

Job value scores are commonly based on the judgments of middle to high level

managers. There is often a tendency to believe the validity of such judgments to be

perfectly correlated with the managerial level of those making these judgments. This belief

may make the concept of inter-rater reliability difficult to put in practice. Also, the process

by which these judgments are obtained have the potential for adding considerable method

bias to the scores, and high level managers are generally not available for research on the

effects of alternative methods. In summary, selection-assignment systems using job values
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on the system decision side should not be justified by utility studies that use the same job

value scores on the evaluation side. Appropriate utility studies of such systems may have

to await the time when much more is known about obtaining two truly independent

estimates of job value scores, one for use on the decision side and the other on the

evaluation side.

O

0

4-44



GLOSSARY

ability testa--A test that measures the current performance or estimates future
performance of a person in some defined domain of cognitive, psychomotor, or

physical functioning.

achievement testa--A test that measures the extent to which a person commands a certain

body of information or possesses a certain skill, usually in a field where training or

instruction has been received.

adaptive testinga--A sequential form of testing in which successive items in the test are

chosen based on the responses to previous items.

algebraic variability derivation--A technique for incorporating uncertainty into utility

by the use of variance estimates.

allocation efficiency--The gain in benefit over random assignment obtained from an

*1 optimal assignment process attributable to differential validity.

allocation process--Classification that capitalizes on differential job validity.

alternative--A course of action whose selection may result in an outcome that will attain

the original objective.

aptitude testa--A test that estimates future performance on other tasks not necessarily

having evident similarity to the test tasks. Aptitude tests are often aimed at

indicating an individual's readiness to learn or to develop proficiency in some

0 particular area if education or training is provided. Aptitude tests sometimes do not

differ in form or substance from achievement tests, but may differ in use and

interpretation.

assessment procedurea--Any method used to measure characteristics of people,

0 programs, or objects.

attenuationa--The reduction of a correlation or regression coefficient from its theoretical

true value due to the imperfect reliability of one or both measures entering into the

relationship.
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batterya--A set of tests standardized on the same population, so that norm-referenced

scores on the several tests can be compared or used in combination for decision-

making.

behaviorb--Observable aspects of a person's activities.

benefit--A theoretically desirable measure of performance that is value-weighted for jobs

and validity in terms of an appropriate metric; when the benefit measure is correctly

combined with costs, it provides a measure of utility.

break-even values--The determination of the lowest value of any individual parameter

that would still yield a positive total utility value.

classification--The matching of individuals and jobs in an organization with the goal of

maximizing aggregate performance; it requires multiple predictors jointly measuring

more than one dimension and multidimensional job criteria

classificationa--The act of determining which of several possible job assignments a

person is to receive.

classification battery-- A battery of tests used operationally to classify personnel.

classification efficiency--The gain in benefits over random assignment obtained from

an optimal assignment process attributable to allocation and hierarchical

classification efficiency; a separate LSE must be used for each criterion.

cognitionC--The act or process of knowing, including both awareness and judgment.

composite scorea--A score that combines several scores by a specified formula.

concurrent criterion-related validitya--Evidence of criterion-related validity in which

predictor and criterion information are obtained at approximately the same time.

constructa--A psychological characteristic (e.g., numerical ability, spatial ability,

introversion, anxiety) considered to vary or differ across individuals. A construct

(sometimes called a latent variable) is not directly observable; rather it is a

theoretical concept derived from research and other experience that has been

constructed to explain observable behavior patterns. When test scores are

interpreted by using a construct, the scores are placed in a conceptual framework.

cost accounting approach--The approach used to develop a dollar criterion that

considers the value of products and services and the organization's costs to provide

products and services.
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cost effectiveness--A state or condition in which the benefits associated with a

particular outcome clearly exceed the cost of obtaining the outcome.

decisionC--A moment of choice in an ongoing process of evaluating alternatives with a

view to selecting one or some combination of them to attain the desired end.

decision treec--A framework for developing the anatomy of a decisionmaking situation

that uses the concepts of probability, utility, and expected value.

decision theoretic approach--The set of alternatives, costs and possible outcomes
leading to a choice.

differential validity--The level of prediction using LSEs of differences among criterion
scores when referring to Hd; this measure is related to the variation of a validity

vector with jobs and to an assignment variable being more valid for its own job

family than any other job family.

discounting--A procedure for equating the costs and benefits that accrue over time to

reflect the opportunity costs and returns foregone.

efficiency--A solution that minimizes costs as measured by physical resources and time

utilized.

expected valueC--A concept that permits a decisionmaker to place a monetary or other

value on the positive and negative consequences likely to result from the selection

of a particular alternative.

external employee movement--The analysis of employee separations and acquisitions

in an organization.

goalc--A subset of an objective expressed in terms of one or more specific dimensions.

gross national product--The sum of all expenditures on goods and services by

households, by firms on new capital, and by government.

hierarchical classification efficiency--All classification efficiency not explainable as

allocation efficiency; it capitalizes on disparate variances of the mean predicted

benefit scores for the corresponding jobs.

hierarchical layering--A phenomenon in which LSEs are more valid or of more value

for some jobs than for others.
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human capital--The skills of the workforce that determine what workers can contribute to

the production process.

human resource accounting--The economic consequences of employees' behavior.

inter-rater reliabilitya--Consistency of judgments made about people or objects among

raters or sets of raters.

interest inventorya--A set of questions or statements that is used to infer the interests,

preferences, likes, and dislikes of a respondent.

inventorya--A questionnaire or checklist, usually in the form of a self-report, that elicits

information about an individual. Inventories are not tests in the strict sense: the'

are most often concerned with personality characteristics, interests, attitudes,

preferences, personal problems, motivation, and so forth.

item analysisa--The process of assessing certain characteristics of test items, usually the

difficulty value, the discriminating power, and sometimes the correlation with an 0

external criterion.

job analysisa--Any of several methods of identifying the tasks performed on a job or the

knowledge, skills, and abilities required to perform that job.

job relatednessb--The inference that scores on a selection instrument are relevant to

performance or other behavior on the job; job relatedness may be demonstrated by

appropriate criterion-related validity coefficients or by gathering evidence of the

relevance of the content of the selection instrument, or of the construct measured.

joint probabilityC--The probability that two or more events will occur.

labor--The worker effort available to the production process.

law of diminishing returns--As the quantity of an input is increased and the quantity •

of other inputs stays the same, a point is reached where the additional output

produced per unit of added input declines.

linear combinationb--The sum of scores, whether weighted differentially or not, on

different assessments to form a single composite score.

linear modeC--A model of choice in which the evaluation of each alternative is based on

the sum of its weighted values on all its dimensions, and the alternative with the

greatest sum is the obvious choice.
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longitudinal studya--Research that involves the measurement of a single sample at

several different points in time.

marginal cost--The cost of producing an additional unit.

maximizing behavior--An approach to decisionmaking oriented toward obtaining an

outcomc of the highest quantity or value.

* mean predicted performance (MPP)--The measurement of benefits can be

approximated by computing MPP across jobs; if MPP is weighted by the value of

each job, it becomes a more useful measure of benefits. It provides a means of

comparing the effectiveness of alternative tests or test batteries in the context of a

specified set of jobs and performance scores.

meta-analvsisb--A procedure to cumulate findings from a number of validity studies to

estimate the validity of the procedure for the kinds of jobs or groups of jobs and

settings included in the studies.

meta-analysis--A technique for determining Lhe degree to which the variance in validity

coefficients across situations for job-test combinations is due to statistical artifacts.

modelC--A physical or abstract representation of some part of the real world that is used to

describe, explain, or predict behavior.

Monte Carlo analysis--A stochastic technique that can provide numerical solutions for

mathematical functions lacking analytic solutions; the analysis typically uses

random numbers as input to an evaluation process employing variance reduction

procedures.

multidimensional screening (MDS)--A selection/classification process using an

algorithm that ensures no nonselected person has a higher predicted performance on

0 any job than the person assigned to that job; the algorithm also ensures that no other

assignment can further raise the mean predicted performance.

multivariateb--Characterizing a measure or study that incorporates several variables.

normsa--Statistics or tabular data that summarize the test performance of specified groups,

such as test takers of various ages or grades. Norms are often assumed to represent

some larger population, such as test takers throughout the country.
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norm-referenced testa--An instrument for which interpretation is based on the

comparison of a test taker's performance to the performance of other people in a

specified group.

objectiveb--Pertaining to scores obtained in a way that minimizes bias or error due to

different observers or scores.

operational efficiency--The improvement in MPP obtained from the usually imperfect

operational selection assignment process as contrasted to potential efficiency, the
improvement obtainable if the maximally efficient prediction composites of a given

battery were to be used in optimal selection/assignment algorithms.

opportunity costc--The cost of the next best alternative that is sacrificed to select what

appears to be the best alternative.

payoffC--The intersection of an alternative and a state of nature in a payoff table; it

measures the value (utility) to the decisionmaker likely to result from the selection

of that alternative given the probabilistic occurrence of the state of nature.

payoff table--A convenient framework in which to present the elements of a decision
making situation employing the concepts of probability, utility, and expected value.

percentile--The score on a test below which a given percentage of scores fall. 0

performanceb--The effectiveness and value of work behavior and its outcomes.

personality inventorya--An inventory that measures one or more characteristics that are

regarded generally as psychological attributes or interpersonal skills.

placement--A procedure in which individuals are matched to levels within jobs as

contrasted to the classification process of matching personnel to jobs.

potential allocation efficiency--The maximum allocation effectiveness achievable

from the differential validity of a given test battery and set of jobs expressed as a
mean predicted performance standard score.

potential classification efficiency--The maximum classification effectiveness

achievable from a given test battery and set of jobs expressed as a mean predicted O
performance standard score; it incorporates both potential allocation efficiency and

hierarchical layering effects.

potential selection efficiency--Rank-ordering applicants on some benefit continuum

and rejecting all those below some point on that continuum.
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potential utilization efficiency--The sum of potential selection efficiency and potential

classification efficiency.

0 predictive criterion-related validitya--Evidence of criterion-related validity in which

criterion scores are observed at a later date, for example, for job or school

performance.

predictora--A measurable characteristic that predicts criterion performance such as scores

on a test, evidence of previous performance, and judgments of interviewers,

panels, or raters.

productivity--The ratio of outputs to inputs of a resource (workers, capital equipment); a
0 measure of the degree of the use of resources.

psychometrica--Pertaining to the measurement of psychological characteristics such as
abilities, aptitudes, achievement, personality, traits, skill, and knowledge.

0 regression equationb--An algebraic equation used to predict criterion performance from

predictor scores.

relevanceb--The extent to which a criterion measure reflects important job performance

dimensions or behaviors.

reliabilitya--The degree to which test scores are consistent, dependable, or repeatable,

that is, the degree to which they are free of errors of measurement.

reliability coefficienta--The square of the correlation of an observed score with its

"true" component; often measured as the coefficient of correlation between two
administrations of a test. The conditions of administration may involve variation of
test forms, raters or scorers, or passage of time. These and other changes in
conditions give rise to qualifying adjectives being used to describe the particular

0 coefficient, e.g., parallel form reliability, rater reliability, test retest reliability, etc.

residual scorea--The difference between the observed and the true or predicted score.

restriction of rangea--A situation in which, because of sampling restrictions, the
variability of data in the sample is less than the variability in the population of

interest.

riskC--A common state or condition in decision making characterized by the possession of
incomplete information regarding a probabilistic outcome.
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sampleb--The individuals who are actually tested from among those in the population to

which the procedure is to be applied.

scorea--Any specific number resulting from the assessment of an individual; a generic term

applied for convenience to such diverse measures as test scores, estimates of latent

variables, production counts, absence records, course grades, ratings, and so forth.

selection--A procedure for rejecting some applicants for organizational membership as

contrasted to assigning all applicants to jobs (classification); or rejecting an

applicant for a single job as contrasted to selection and assignment to one of a

number of jobs (multidimensional selection).

selection decisiona--A decision to accept or reject applicants for a job on the basis of

information.

selection instrumentb--Any method or device used to evaluate characteristics of persons

as a basis for accepting or rejecting applicants.

selection proceduresb--Process of arriving at a selection decision.

sensitivity analysis--An analytic technique in which a utility parameter is varied through

a range of values, holding other parameter values constant to determine the impact

on the total utility estimates.

shrinkagea--Refers to the fact that a prediction equation based on a first sample will tend

not to fit a second so well.

shrinkage correctionb--Adjustment to the multiple correlation coefficient for the fact that

the beta weights in a prediction equation cannot be expected to fit a second sample

as well as the original.

simulation modelc--A special type of abstract model that is analogous to a segment of

the real world and contains a time dimension. It is used to explain and predict

behavior as if it occurred in the real world.

skillb-_Competence to perform the work required by the job.

split-half reliability coefficienta--An internal analysis coefficient obtained by using

half the items on the test to yield one score and the other half of the items to yield a

second, independent score. The correlation between the scores on these two half-

tests, stepped up via the Spearman-Brown Formula, provides an estimate of the

alternate-form reliability of the total test.
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standard scorea--A score that describes the location of a person's score within a set of

scores in terms of its distance from the mean in standard deviation units.

standardized predictionb--A test employed for estimaLing a criterion of job

performance, the test having been developed and normative information produced

according to professionally prescribed methods as described in standard reference

works.

standardsc--Criteria against which the results of an implemented decision can be

measured.

state of nature--A state or condition likely to prevail when a choice is made.

sunk costs--Costs that once incurred cannot be changed by future action.

testb--A measure based on a sample of behavior.

test fairness--The most commonly accepted model of test fairness is the regression

model; a fair test predicts the job performance of a minority and the majority in the

same way.

test-retest coefficienta--A reliability coefficient obtained by administering the same test

a second time to the same group after a time interval and correlating the two sets of

scores.

trade-off valueC--A value that exists when a given amount of one kind of performance

may in some measure be substituted for another kind of performance.

* traditional selection approach--The view of tests as measuring instruments intended

to assign accurate values to attributes of an individual stressing precision of

measurement and estimation rather than selection outcomes.

unidimensionalitya--A characteristic of a test that r,easures only one latent variable.

utilityC--Technically, want-satisfying power; it is often defined as the preference of the

decisionmaker for a given outcome.

utility analysis--The determination of institutional gain or loss (outcomes) anticipated

* from various courses of action usually measured in terms of dollars.

validitya--The degree to which a certain inference from a test is appropriate or meaningful.

validity coefficienta--A coefficient of correlation that shows the strength of the relation

between predictor and criterion.
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validity generalizationa--Applying validity evidence obtained in one or more situations

to other similar situations on the basis of simultaneous estimation, meta-analysis, or

synthetic validation arguments.

valuesc--The nominative standards by which human beings and organizations are

influenced in their choices.

variabilitvb-The spread or scatter of scores. 0

variablea--A quantity that may take on any one of a specified set of values.

variancea--A measure of variability; the average squared deviation from the mean: the

square of the standard deviation; and, in the experimental design literature, the sum 0

of the squared deviation from its mean doubled by the degrees of freedom.

Z-scorea--A type of standard score scale in which the mean equals zero and the standard

deviation equals one unit for the group used in defining the scale.

0

NOTES:

a Adapted from American Psychological Association, American Educational Research 0:
Association, and National Council on Measurement in Education (1985).
Standards for Education and Psychological Testing.

b Adapted from Society for Industrial and Organization Psychology (1987). Principles
for the Validation and Use of Personnel Selection Procedures.

c Adapted from Heyne (1988). Microeconomics.
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